#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Intensive measures of luminescence in GaN/InGaN heterostructures


Autoři: Jui-Ju Hsiao aff001;  Yi-Jen Huang aff001;  Hung-Ing Chen aff001;  Joe-Air Jiang aff002;  Jen-Cheng Wang aff001;  Ya-Fen Wu aff003;  Tzer-En Nee aff001
Působiště autorů: Graduate Institute of Electro-optical Engineering and Department of Electronic Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China aff001;  Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan, Republic of China aff002;  Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City, Taiwan, Republic of China aff003;  Department of Oral and Maxillofacial Surgery, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, Republic of China aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222928

Souhrn

The intensive measures of luminescence in a GaN/InGaN multiple quantum well system are used to examine the thermodynamics and phenomenological structure. The radiative /nonradiative transitions along with absorbed or emitted phonons that occur between the different quantum states of the electrons and holes associated with these processes make the quantum efficiency of a semiconductor nanosystem in an equilibrium state an extensive property. It has long been recognized that tuning of the indium (In) composition in InGaN interlayers gives the potential to obtain a spectrum in the near-infrared to near-ultraviolet spectral range. The thermodynamic intensive properties, including the Debye temperature, carrier temperature, and junction temperature, are the most appropriate metrics to describe the optical-related interactions inherent in a given heterostructure and so can be used as the state variables for understanding the quantum exchange behaviors. The energetic features of the quantum processes are characterized based on analysis of the intensive parameters as determined by means of electroluminescence (EL) and photoluminescence (PL) spectroscopy and current-voltage measurement and then correlated with the designed InGaN/GaN microstructures. According to the McCumber-Sturge theory, the EL and PL Debye temperatures obtained experimentally signal the strength of the electron-phonon and photon-phonon interaction, respectively, while the EL and PL carrier/junction temperatures correspond to the carrier localization. Higher EL Debye temperatures and lower EL carrier/junction temperatures reflect significantly higher luminescence quantum yields, indicative of electron-phonon coupling in the transfer of thermal energy between the confined electrons and the enhancement by excited phonons of heat-assisted emissions. On the other hand, the observation of low luminescence efficiency, corresponding to the lower PL Debye temperatures and higher PL carrier/junction temperatures, is attributed to photon-phonon coupling. These findings are in good accordance to the dependence of the EL and PL quantum efficiency on the In-content of the InGaN/GaN barriers, suggesting that the characteristic Debye and carrier/junction temperatures are intensive parameters useful for assessing the optical properties of a nano-engineered semiconductor heterostructure.

Klíčová slova:

Engineers – Thermodynamics – Luminescence – Phonons – Photons – Indium – Electrons – Energy transfer


Zdroje

1. Tsuchiya H, Ravaioli U, et al. Particle Monte Carlo simulation of quantum phenomena in semiconductor nanostructures, J. Appl. Phys. 2001; 89: 4023–4029.

2. Yu S, Kim KW, Stroscio MA, Iafrate GJ, Ballato A, et al. Electron interaction with confined acoustic phonons in cylindrical quantum wires via deformation potential, J. Appl. Phys. 1996: 80: 2815–2822.

3. Wing WJ, Sadeghi SM, Gutha RR, Campbell Q, Mao C, et al. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission, J. Appl. Phys. 2015; 118: 124302. doi: 10.1063/1.4931378 26442574

4. Zhang JZ, Dyson A, Ridley BK, et al. Hot electron energy relaxation in lattice-matched InAlN/AlN/GaN heterostructures: The sum rules for electron-phonon interactions and hot-phonon effect, J. Appl. Phys. 2015; 117: 025701.

5. Ota H, Hirano A, Watanabe Y, Yasuda N, Iwamoto K, Akiyama K, Okada K, Migita S, Nabatame T, Toriumi A, et al. In proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; p. 65–68.

6. Levard H, Laribi S, Guillemoles JF, et al. Phonon lifetime in SiSn and its suitability for hot-carrier solar cells, Appl. Phys. Lett. 2014; 104: 222106.

7. Fiory AT, Ravindra NM, et al. Light Emission from Silicon: Some Perspectives and Applications, J. Electron Microsc. 2003; 32: 1043–1051.

8. Compagnone F, Carlo AD, Lugli P., et al. Electron–optical-phonon interaction in the In1-xGaxAs/In1-yAlyAs superlattice, Phys. Rev. B 2001; 65: 125314.

9. Abdurashitov JN, Gavrin VN, Girin SV, Gorbachev VV, Ibragimova TV, Kalikhov AV, Khairnasov NG, Knodel TV, Kornoukhov VN, Mirmov IN, Shikhin AA, Veretenkin EP, Vermul VM, Yants VE, Zatsepin GT, et al. The Russian-American Gallium Experiment (SAGE) Cr Neutrino Source Measurement, Phys. Rev. Lett. 1996; 77: 4708–4711. doi: 10.1103/PhysRevLett.77.4708 10062611

10. Kastoryano MJ, Wolf MM, Eisert J, et al. Precisely Timing Dissipative Quantum Information Processing, Phys. Rev. Lett. 2013; 110: 110501. doi: 10.1103/PhysRevLett.110.110501 25166517

11. Radisavljevic B, Kis A, et al. Mobility engineering and a metal–insulator transition in monolayer MoS2, Nature Mater. 2013; 12: 815–820.

12. Jena D, Konar A, et al. Enhancement of Carrier Mobility in Semiconductor Nanostructures by Dielectric Engineering, Appl. Phys. Lett. 2007; 98: 136805.

13. Poppe A, Farkas G, Horváth G, et al. Electrical, thermal and optical characterization of power LED assemblies, in Proc. THERMINIC, 2006; pp. 197–202.

14. Dervos CT, Skafidas PD, Mergos JA, Vassiliou P, et al. p-n Junction Photocurrent Modelling Evaluation under Optical and Electrical Excitation, 2004; 5: 58–70.

15. Dehkhoda F1, Soltan A, Ponon N, Jackson A, O’Neill A, et al. Patrick Degenaar, Self-sensing of temperature rises on light emitting diode based optrodes, J. Neural Eng. 2018; 15: 026012. doi: 10.1088/1741-2552/aaa56d 29303113

16. Tsutsui M, Taniguchi M, Kawai T, et al. Single-molecule identification via electric current noise, Nat. Commun. 2010; 1: 138. doi: 10.1038/ncomms1141 21266988

17. Keppens A, Ryckaert WR, Deconinck G, Hanselaer P, et al. High power light-emitting diode junction temperature determination from currentvoltage characteristics, J. Appl. Phys. 2008; 104: 093104.

18. Guo ZQ, Shih TM, Peng ZB, Qiu HH, Lu YJ, Gao YL, Zhu LH, Zheng JH, Chen Z, et al. On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes, J. Appl. Phys. 2017; 7: 015307.

19. Keppens A, Ryckaert WR, Deconinck G, Hanselaer P, et al. Modeling high power light-emitting diode spectra and their variation with junction temperature, J. Appl. Phys. 2010; 108: 043104.

20. Ziman JM, et al. Electrons and Phonons, Oxford University Press, 1960.

21. Lee JC, Wu YF, Nee TE, Wang JC, et al. Characterization of Nanocrystallites of InGaN/GaN Multiquantum Wells by High-Resolution X-ray Diffraction, IEEE T. Nanotechnol. 10 (2011) 827.

22. Hsiao JJ, Chen HI, Huang YJ, Wang JC, Lu BY, Wu YF., Nee TE, et al. Subcell Debye behavior analysis of order–disorder effects in triple-junction InGaP-based photovoltaic solar cells, J. lumin. 2015; 168: 309–314.

23. Xi Y, Xi JQ, Gessmann T, Shah JM, Kim JK, Schubert EF, Fischer AJ, Crawford MH, Bogart KHA, Allerman AA, et al. Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods, Appl. Phys. Lett. 2005; 86: 031907.

24. Sardara DK, Stubblefield SC, et al. Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host, J. Appl. Phys. 1998; 83: 1195–1199.

25. Grimvall G, et al. Thermophysical Properties of Materials, 1st Edition, 1986.

26. Shigehiro T, Yagi S, Maeda T, Nakazumi H, Fujiwara H, Sakurai Y, et al. Photo- and Electroluminescence from 2‑(Dibenzo[b,d]furan-4-yl)pyridine-Based Heteroleptic Cyclometalated Platinum(II) Complexes: Excimer Formation Drastically Facilitated by an Aromatic Diketonate Ancillary Ligand, J. Phys. Chem. 2013; 117: 532–542.

27. Xu H, Lv Y, Zhu W, Xu F, Long L, Yu F, Wang Z, Wei B, et al. Difference between photoluminescence and electroluminescence of excimer-based platinum [1, 3-difluoro-4,6-di(2-pyridinyl) benzene]chloride, J. Phys. D: Appl. Phys. 2011; 44: 415102.

28. McCluskey MD, Romano LT, Krusor BS, Johnson NM, Suski T, and Jun J, et al. Interdiffusion of In and Ga in InGaN quantum wells, Appl. Phys. Lett. 1998; 73 1281–1283.

29. Nee TE, Shen HT, Wang JC, Lin RM, et al. Characterization of Berthelot-type behaviors of InGaN/GaN semiconductor heterosystems, J. Cryst. Growth. 2006; 287: 468–471.

30. Eliseev PG, et al. The red σ2/kT spectral shift in partially disordered semiconductors, J. Appl. Phys. 2003; 93: 5404–5415.

31. Feng ZC, Chen J, Tsai H, Yang J, Li P, Wetzel C, Detchprohm T, Nelson J, Ferguson IT, et al. Optical and structural investigation on InGaN/GaN multiple quantum well light-emitting diodes grown on sapphire by metalorganic chemical vapor deposition, Proc. of SPIE 2006; 6337: 63370D.

32. Varshni YP, et al. TEMPERATURE DEPENDENCE OF THE ENERGY GAP IN SEMICONDUCTORS, Physica 1967; 34: 149–154.

33. Xi Y, Xi JQ, Gessmann T, Shah JM, Kim JK, Schuberta EF, et al. Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods, Appl. Phys. Lett. 2005; 86: 031907.

34. Nee TE, Shen HT, Wang JC, Wu YF, et al. Anomalous excitation dependence of electroluminescence in InGaN/GaN light emitting diodes, J. Appl. Phys. 2007; 101: 023703.

35. Li C, Ji Z, Li J, Xu M, Xiao H, Xiangang X, et al. Electroluminescence properties of InGaN/GaN multiple quantum well-based LEDs with different indium contents and different well widths, Sci. Rep. 2017; 7: 15301. doi: 10.1038/s41598-017-15561-9 29127337


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#