#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fecal indicator bacteria and virus removal in stormwater biofilters: Effects of biochar, media saturation, and field conditioning


Autoři: Benjamin P. Kranner aff001;  A. R. M. Nabiul Afrooz aff003;  Nicole J. M. Fitzgerald aff002;  Alexandria B. Boehm aff001
Působiště autorů: Department of Civil and Environmental Engineering, Stanford University, Stanford, California, United States of America aff001;  Engineering Research Center (ERC) for Re-inventing the Nation’s Urban Water Infrastructure (ReNUWIt), Stanford, California, United States of America aff002;  California State Water Resources Control Board, Sacramento, California, United States of America aff003;  Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222719

Souhrn

Stormwater biofilters are used to attenuate the flow and volume of runoff and reduce pollutant loading to aquatic systems. However, the capacity of biofilters to remove microbial contaminants remains inadequate. While biochar has demonstrated promise as an amendment to improve microbial removal in laboratory-scale biofilters, it is uncertain if the results are generalizable to the field. To assess biochar performance in a simulated field setting, sand and biochar-amended sand biofilters were periodically dosed with natural stormwater over a 61-week conditioning phase. Impact of media saturation was assessed by maintaining biofilters with and without a saturated zone. Biochar-amended biofilters demonstrated improved Escherichia coli removal over sand biofilters during the first 31 weeks of conditioning though media type did not impact E. coli removal during the last 30 weeks of conditioning. Presence of a saturated zone was not a significant factor influencing E. coli removal across the entire conditioning phase. Following conditioning, biofilters underwent challenge tests using stormwater spiked with wastewater to assess their capacity to remove wastewater-derived E. coli, enterococci, and male-specific (F+) coliphage. In challenge tests, biochar-amended biofilters demonstrated enhanced removal of all fecal indicators relative to sand biofilters. Additionally, saturated biofilters demonstrated greater removal of fecal indicators than unsaturated biofilters for both media types. Discrepant conclusions from the conditioning phase and challenge tests may be due to variable influent chemistry, dissimilar transport of E. coli indigenous to stormwater and those indigenous to wastewater, and differences in E. coli removal mechanisms between tests. Mobilization tests conducted following challenge tests showed minimal (<2.5%) observable mobilization of fecal indicators, regardless of media type and presence of a saturated zone. While our results emphasize the challenge of translating biochar’s performance from the laboratory to the field, findings of this study inform biofilter design to remove microbial contaminants from urban stormwater.

Klíčová slova:

Bacterial biofilms – Biofilms – Contaminants – Effluent – Enterococcus – Water pollution – Biomimetics


Zdroje

1. National Research Council. Urban Stormwater Management in the United States. 2009. doi: 10.17226/12465

2. Dietz ME. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007;186: 351–363. doi: 10.1007/s11270-007-9484-z

3. Prince George’s County. Low-Impact Development Design Strategies: An Integrated Design Approach. 2000.

4. Geosyntec Consultants, Wright Water Engineers. International Stormwater Best Management Practices (BMP) Database Final Report Summary Statistics. 2016.

5. Hathaway JM, Hunt WF, Graves AK, Wright JD. Field evaluation of bioretention indicator bacteria sequestration in Wilmington, North Carolina. J Environ Eng. 2011;137: 1103–1113. doi: 10.1061/(ASCE)EE.1943-7870.0000444

6. Chandrasena GI, Deletic A, Ellerton J, McCarthy DT. Evaluating Escherichia coli removal performance in stormwater biofilters: A laboratory-scale study. Water Sci Technol. 2012;66: 1132–1138. doi: 10.2166/wst.2012.283 22797244

7. Zhang L, Seagren EA, Davis AP, Karns JS. Effects of temperature on bacterial transport and destruction in bioretention media: Field and laboratory evaluations. Water Environ Res. 2012;84: 485–496. doi: 10.2175/106143012X13280358613589 22866389

8. Alhashimi HA, Aktas CB. Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resour Conserv Recycl. Elsevier B.V.; 2017;118: 13–26. doi: 10.1016/j.resconrec.2016.11.016

9. Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ Sci Technol. 2010;44: 827–833. doi: 10.1021/es902266r 20030368

10. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. Elsevier Ltd; 2014;99: 19–23. doi: 10.1016/j.chemosphere.2013.10.071 24289982

11. Suliman W, Harsh JB, Fortuna AM, Garcia-Pérez M, Abu-Lail NI. Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns. Environ Sci Technol. 2017;51: 5071–5081. doi: 10.1021/acs.est.6b04535 28358986

12. Sasidharan S, Torkzaban S, Bradford SA, Kookana R, Page D, Cook PG. Transport and retention of bacteria and viruses in biochar-amended sand. Sci Total Environ. Elsevier B.V.; 2016;548–549: 100–109. doi: 10.1016/j.scitotenv.2016.06.153

13. Abit SM, Bolster CH, Cantrell KB, Flores JQ, Walker SL. Transport of Escherichia coli, Salmonella typhimurium, and microspheres in biochar-amended soils with different textures. J Environ Qual. 2014;43: 371. doi: 10.2134/jeq2013.06.0236 25602571

14. Bolster CH, Abit SM. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil. J Environ Qual. 2012;41: 124. doi: 10.2134/jeq2011.0207 22218181

15. Abit SM, Bolster CH, Cai P, Walker SL. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ Sci Technol. 2012;46: 8097–8105. doi: 10.1021/es300797z 22738035

16. Mohanty SK, Boehm AB. Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter. Water Res. Elsevier Ltd; 2015;85: 208–215. doi: 10.1016/j.watres.2015.08.026 26320722

17. Mohanty SK, Cantrell KB, Nelson KL, Boehm AB. Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Res. Elsevier Ltd; 2014;61: 288–296. doi: 10.1016/j.watres.2014.05.026 24952272

18. Afrooz ARMN Boehm AB. Escherichia coli removal in biochar-modified biofilters: Effects of biofilm. PLoS One. 2016;11: 1–17. doi: 10.1371/journal.pone.0167489 27907127

19. Nabiul Afrooz ARM, Boehm AB. Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecol Eng. Elsevier B.V.; 2017;102: 320–330. doi: 10.1016/j.ecoleng.2017.02.053

20. Fraser AN, Zhang Y, Sakowski EG, Preheim SP. Dynamics and functional potential of stormwater microorganisms colonizing sand filters. Water (Switzerland). 2018;10. doi: 10.3390/w10081065

21. Mohanty SK, Torkelson AA, Dodd H, Nelson KL, Boehm AB. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater. Environ Sci Technol. 2013;47: 10791–10798. doi: 10.1021/es305136b 23721343

22. Stevik TK, Aa K, Ausland G, Hanssen JF. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review. Water Res. 2004;38: 1355–1367. doi: 10.1016/j.watres.2003.12.024 15016513

23. Schäfer A, Ustohal P, Harms H, Stauffer F, Dracos T, Zehnder AJB. Transport of bacteria in unsaturated porous media. J Contam Hydrol. 1998;33: 149–169. doi: 10.1016/S0169-7722(98)00069-2

24. Bell CD, Spahr K, Grubert E, Stokes-Draut J, Gallo E, McCray JE, et al. Decision making on the gray-green stormwater infrastructure continuum. J Sustain Water Built Environ. 2019;5. doi: 10.1061/JSWBAY.0000871

25. Lau AYT, Tsang DCW, Graham NJD, Ok YS, Yang X, Li X. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere. Elsevier Ltd; 2017;169: 89–98. doi: 10.1016/j.chemosphere.2016.11.048 27863306

26. Afrooz N, Pitol A, Kitt D, Boehm A. Role of microbial cell properties on bacterial pathogen and coliphage removal in biochar-modified biofilters. Environ Sci Water Res Technol. Royal Society of Chemistry; 2018; 2160–2169. doi: 10.1039/C8EW00297E

27. Mohanty SK, Boehm AB. Escherichia coli removal in biochar-augmented biofilter: Effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. Environ Sci Technol. 2014;48: 11535–11542. doi: 10.1021/es5033162 25222640

28. Reddy KR, Xie T, Dastgheibi S. Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J Environ Eng. 2014;140: 04014043. doi: 10.1061/(ASCE)EE.1943-7870.0000872

29. Chung JW, Foppen JW, Izquierdo M, Lens PNL. Removal of Escherichia coli from saturated sand columns supplemented with hydrochar produced from maize. J Environ Qual. 2014;43: 2096. doi: 10.2134/jeq2014.05.0199 25602226

30. Ulrich BA, Loehnert M, Higgins CP. Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environ Sci Water Res Technol. Royal Society of Chemistry; 2017;3: 726–734. doi: 10.1177/1077546317714883

31. United States Environmental Protection Agency. Low Impact Development (LID): A Literature Review. Washington, DC; 2000. doi: 10.1016/j.biocon.2009.12.004

32. Barrett ME, Limouzin M, Lawler DF. Effects of media and plant selection on biofiltration performance. J Environ Eng. 2012;139: 462–470. doi: 10.1061/(asce)ee.1943-7870.0000551

33. Li YL, Deletic A, Alcazar L, Bratieres K, Fletcher TD, McCarthy DT. Removal of Clostridium perfringens, Escherichia coli and F-RNA coliphages by stormwater biofilters. Ecol Eng. 2012;49: 137–145. doi: 10.1016/j.ecoleng.2012.08.007

34. Larry Walker Associates, Geosyntec Consultants. Ventura County Technical Guidance Manual for Stormwater Quality Control Measures. Ventura, CA; 2011.

35. Ambrose RF, Winfrey BK. Comparison of stormwater biofiltration systems in Southeast Australia and Southern California. Wiley Interdiscip Rev Water. 2015;2: 131–146. doi: 10.1002/wat2.1064

36. Peng J, Cao Y, Rippy MA, Afrooz ARMN, Grant SB. Indicator and pathogen removal by low impact development best management practices. Water (Switzerland). 2016;8: 1–24. doi: 10.3390/w8120600

37. Rippy MA. Meeting the criteria: linking biofilter design to fecal indicator bacteria removal. Wiley Interdiscip Rev Water. 2015;2: 577–592. doi: 10.1002/wat2.1096

38. Liu Y, Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. Environ Sci Technol. 2008;42: 443–449. doi: 10.1021/es071861b 18284144

39. Yang W, Bradford SA, Wang Y, Sharma P, Shang J, Li B. Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins. Environ Pollut. Elsevier Ltd; 2019;246: 855–863. doi: 10.1016/j.envpol.2018.12.075 30623842

40. Seagren EA, Rittmann BE, Valocchi AJ. An experimental investigation of NAPL pool dissolution enhancement by flushing. J Contam Hydrol. 1999;37: 111–137. doi: 10.1016/S0169-7722(98)00157-0

41. Parker J, van Genuchten MT. Determining Transport Parameters from Laboratory and Field Tracer Experiments. 1984.

42. United States Department of Agriculture Natural Resources Conservation Service. Urban Hydrology for Small Watersheds: Technical Release 55. Washington, DC; 1986.

43. Santa Clara Valley Urban Runoff Prevention Program. Matadero Watershed [Internet].

44. United States Department of Agriculture Natural Resources Conservation Service. Web Soil Survey [Internet]. Available: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

45. California Stormwater Quality Association (CASQA). California Stormwater Quality Association Stormwater Best Management Practice Handbook. 2003.

46. Jarvis B, Wilrich C, Wilrich PT. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values. J Appl Microbiol. 2010;109: 1660–1667. doi: 10.1111/j.1365-2672.2010.04792.x 20602657

47. Sinton LW, Finlay RK, Reid AJ. A simple membrane filtration-elution method for the enumeration of F- RNA, F-DNA and somatic coliphages in 100-ml water samples. J Microbiol Methods. 1996;25: 257–269. doi: 10.1016/0167-7012(95)00100-X

48. Méndez J, Audicana A, Isern A, Llaneza J, Moreno B, Tarancón ML, et al. Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water. J Virol Methods. 2004;117: 19–25. doi: 10.1016/j.jviromet.2003.11.013 15019256

49. Velten S, Hammes F, Boller M, Egli T. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Res. 2007;41: 1973–1983. doi: 10.1016/j.watres.2007.01.021 17343893

50. Olivieri A. Development of a Protocol for Risk Assessment of Microorganisms in Separate Stormwater Systems. Water Intell Online. 2015; doi: 10.2166/9781780403809

51. Grebel JE, Mohanty SK, Torkelson AA, Boehm AB, Higgins CP, Maxwell RM, et al. Engineered infiltration systems for urban stormwater reclamation. Environ Eng Sci. 2013;30: 437–454. doi: 10.1089/ees.2012.0312

52. Schneider DA, Gourse RL. Relationship between growth rate and ATP concentration in Escherichia coli: A bioassay for available cellular ATP. J Biol Chem. 2004;279: 8262–8268. doi: 10.1074/jbc.M311996200 14670952

53. Mempin R, Tran H, Chen C, Gong H, Kim Ho K, Lu S. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013;13. doi: 10.1186/1471-2180-13-13

54. Arnold JW, Bailey GW. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: Scanning electron and atomic force microscopy study. Poult Sci. 2000;79: 1839–1845. doi: 10.1093/ps/79.12.1839 11194050

55. Díaz C, Cortizo MC, Schilardi PL, Saravia SGG de, Mele MAFL de. Influence of the nano-micro structure of the surface on bacterial adhesion. Mater Res. 2007;10: 11–14. doi: 10.1590/s1516-14392007000100004

56. Foppen JW, Liem Y, Schijven J. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Res. 2008;42: 211–219. doi: 10.1016/j.watres.2007.06.064 17825871

57. Haznedaroglu BZ, Kim H., Bradford SA, Walker SL. Relative transport behavior of E. coli 0157:H7 and Salmonella enterica serovar Pullorum in packed bed column systems: Influence of solution chemistry and cell concentration. Environ Sci Technol. 2009;43: 1838–1844. doi: 10.1021/es802531k 19368180

58. Kim HN, Bradford SA, Walker SL. Escherichia coli O157:H7 transport in saturated porous media: Role of solution chemistry and surface macromolecules. Environ Sci Technol. 2009;43: 4340–4347. doi: 10.1021/es8026055 19603644

59. Bolster CH, Haznedaroglu BZ, Walker SL. Diversity in cell properties and transport behavior among 12 different environmental Escherichia coli isolates. J Environ Qual. 2009;38: 465. doi: 10.2134/jeq2008.0137 19202016

60. McLellan SL. Genetic diversity of Escherichia coli isolated from urban rivers and beach water. Appl Environ Microbiol. 2004;70: 4658–4665. doi: 10.1128/AEM.70.8.4658-4665.2004 15294799

61. Krometis LAH, Characklis GW, Simmons OD, Dilts MJ, Likirdopulos CA, Sobsey MD. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 2007;41: 506–516. doi: 10.1016/j.watres.2006.09.029 17141293

62. Krometis LAH, Drummey PN, Characklis GW, Sobsey MD. Impact of microbial partitioning on wet retention pond effectiveness. J Environ Eng. 2009;135: 758–767. doi: 10.1061/(ASCE)EE.1943-7870.0000040

63. Krometis LAH, Characklis GW, Drummey PN, Sobsey MD. Comparison of the presence and partitioning behavior of indicator organisms and Salmonella spp. in an urban watershed. J Water Health. 2010;8: 44–59. doi: 10.2166/wh.2009.032 20009247

64. Chandrasena GI, Pham T, Payne EG, Deletic A, McCarthy DT. E. coli removal in laboratory scale stormwater biofilters: Influence of vegetation and submerged zone. J Hydrol. Elsevier B.V.; 2014;519: 814–822. doi: 10.1016/j.jhydrol.2014.08.015

65. Dietz ME, Clausen JC. Saturation to improve pollutant retention in a rain garden. Environ Sci Technol. 2006;40: 1335–1340. doi: 10.1021/es051644f 16572794

66. Abu-Lail NI, Camesano TA. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of pseudomonas putida KT2442. Biomacromolecules. 2003;4: 1000–1012. doi: 10.1021/bm034055f 12857085

67. Becker MW, Collins SA, Metge DW, Harvey RW, Shapiro AM. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater. J Contam Hydrol. 2004;69: 195–213. doi: 10.1016/j.jconhyd.2003.08.001 15028391

68. Fontes DE, Mills AL, Hornberger GM, Herman JS. Physical and chemical factors influencing transport of microorganisms through porous media. Appl Environ Microbiol. 1991;57: 2473–81. 1662933

69. Silliman SE, Dunlap R, Fletcher M, Schneegurt MA. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments. Water Resour Res. 2001;37: 2699–2707. doi: 10.1029/2001WR000331

70. United States Environmental Protection Agency. Review of Coliphages As Possible Indicators of Fecal Contamination. Washington, DC; 2015.

71. Wolfand JM, Bell CD, Boehm AB, Hogue TS, Luthy RG. Multiple pathways to bacterial load reduction by stormwater best management practices: Trade-offs in performance, volume, and treated area. Environ Sci Technol. American Chemical Society; 2018;52: 6370–6379. doi: 10.1021/acs.est.8b00408 29676892

72. Tang P, Yu B, Zhou Y, Zhang Y, Li J. Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: a laboratory study. Environ Sci Pollut Res. Environmental Science and Pollution Research; 2017;24: 9210–9219. doi: 10.1007/s11356-017-8458-y 28220386

73. Pintelon TRR, Picioreanu C, van Loosdrecht MCM, Johns ML. The effect of biofilm permeability on bio-clogging of porous media. Biotechnol Bioeng. 2012;109: 1031–1042. doi: 10.1002/bit.24381 22095039

74. Ballona Creek Watershed Management Group. Enhanced Watershed Management Program for the Ballona Creek Watershed. 2016.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#