#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review


Autoři: Cecily A. Byrne aff001;  Amy T. McNeil aff001;  Timothy J. Koh aff001;  Amelia F. Brunskill aff002;  Giamila Fantuzzi aff001
Působiště autorů: University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America aff001;  University of Illinois at Chicago, Library of the Health Sciences, Chicago, IL, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222345

Souhrn

Background

Cachexia occurs in individuals affected by chronic diseases in which systemic inflammation leads to fatigue, debilitation, decreased physical activity and sarcopenia. The pathogenesis of cachexia-associated sarcopenia is not fully understood.

Objectives

The aim of this systematic review is to summarize the current evidence on genes expressed in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia (cases) compared to controls and to assess the strength of such evidence.

Methods

We searched PubMed, EMBASE and CINAHL using three concepts: cachexia/sarcopenia and associated symptoms, gene expression, and skeletal muscle.

Results

Eighteen genes were studied in at least three research articles, for a total of 27 articles analyzed in this review. Participants were approximately 60 years of age and majority male; sample size was highly variable. Use of comparison groups, matching criteria, muscle biopsy location, and definitions of cachexia and sarcopenia were not homogenous. None of the studies fulfilled all four criteria used to assess the quality of molecular analysis, with only one study powered on the outcome of gene expression. FOXO1 was the only gene significantly increased in cases versus healthy controls. No study found a significant decrease in expression of genes involved in autophagy, apoptosis or inflammation in cases versus controls. Inconsistent or non-significant findings were reported for genes involved in protein degradation, muscle differentiation/growth, insulin/insulin growth factor-1 or mitochondrial transcription.

Conclusion

Currently available evidence on gene expression in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia is not powered appropriately and is not homogenous; therefore, it is difficult to compare results across studies and diseases.

Klíčová slova:

Medicine and health sciences – Pulmonology – Chronic obstructive pulmonary disease – Diagnostic medicine – Signs and symptoms – Sarcopenia – Pathology and laboratory medicine – Body weight – Weight loss – Muscles – Skeletal muscles – Surgical and invasive medical procedures – Abdominal surgery – Biology and life sciences – Genetics – Gene expression – Physiology – Physiological parameters – Anatomy – Musculoskeletal system – Research and analysis methods – Research assessment – Systematic reviews


Zdroje

1. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27: 793–799. doi: 10.1016/j.clnu.2008.06.013 18718696

2. Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia—can findings from animal models be translated to humans? BMC Cancer. 2016;16: 75. doi: 10.1186/s12885-016-2121-8 26856534

3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019. [Epub ahead of print]

4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39: 412–423. doi: 10.1093/ageing/afq034 20392703

5. Stephens NA, Skipworth RJ, Gallagher IJ, Greig CA, Guttridge DC, Ross JA, et al. Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle. 2015;6: 53–61. doi: 10.1002/jcsm.12005 26136412

6. Kneppers AEM, Langen RCJ, Gosker HR, Verdijk LB, Cebron Lipovec N, Leermakers PA, et al. Increased Myogenic and Protein Turnover Signaling in Skeletal Muscle of Chronic Obstructive Pulmonary Disease Patients With Sarcopenia. J Am Med Dir Assoc. 2017;18: 637.e1–.637.e11.

7. Lok C. Cachexia: The last illness. Nature. 2015;528: 182–183. doi: 10.1038/528182a 26659165

8. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294: 1704–1708. doi: 10.1126/science.1065874 11679633

9. Batt J, Bain J, Goncalves J, Michalski B, Plant P, Fahnestock M, et al. Differential gene expression profiling of short and long term denervated muscle. FASEB J. 2006;20: 115–117. doi: 10.1096/fj.04-3640fje 16291642

10. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18: 39–51. doi: 10.1096/fj.03-0610com 14718385

11. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001;98: 14440–14445. doi: 10.1073/pnas.251541198 11717410

12. Gallagher IJ, Stephens NA, MacDonald AJ, Skipworth RJ, Husi H, Greig CA, et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin Cancer Res. 2012;18: 2817–2827. doi: 10.1158/1078-0432.CCR-11-2133 22452944

13. Murton AJ, Maddocks M, Stephens FB, Marimuthu K, England R, Wilcock A. Consequences of Late-Stage Non-Small-Cell Lung Cancer Cachexia on Muscle Metabolic Processes. Clin Lung Cancer. 2017;18: e1–e11. doi: 10.1016/j.cllc.2016.06.003 27461772

14. Bonetto A, Penna F, Aversa Z, Mercantini P, Baccino FM, Costelli P, et al. Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve. 2013;48: 387–392. doi: 10.1002/mus.23798 23861230

15. Guo Y, Gosker HR, Schols AM, Kapchinsky S, Bourbeau J, Sandri M, et al. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188: 1313–1320. doi: 10.1164/rccm.201304-0732OC 24228729

16. Op den Kamp CM, Langen RC, Snepvangers FJ, de Theije CC, Schellekens JM, Laugs F, et al. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr. 2013;98: 738–748. doi: 10.3945/ajcn.113.058388 23902785

17. Thapaliya S, Runkana A, McMullen MR, Nagy LE, McDonald C, Naga Prasad SV, et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014;10: 677–690. doi: 10.4161/auto.27918 24492484

18. Doucet M, Russell AP, Léger B, Debigaré R, Joanisse DR, Caron MA, et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176: 261–269. doi: 10.1164/rccm.200605-704OC 17478621

19. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Authier FJ, Gherardi RK, et al. Ubiquitin and proteasome gene expression is increased in skeletal muscle of slim AIDS patients. Int J Mol Med. 1998;2: 69–73. 9854146

20. Marzetti E, Lorenzi M, Landi F, Picca A, Rosa F, Tanganelli F, et al. Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp Gerontol. 2017;87: 92–99. doi: 10.1016/j.exger.2016.10.003 27847330

21. Remels AH, Schrauwen P, Broekhuizen R, Willems J, Kersten S, Gosker HR, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30: 245–252. doi: 10.1183/09031936.00144106 17459894

22. Sun YS, Ye ZY, Qian ZY, Xu XD, Hu JF. Expression of TRAF6 and ubiquitin mRNA in skeletal muscle of gastric cancer patients. J Exp Clin Cancer Res. 2012;31:81. doi: 10.1186/1756-9966-31-81 23013936

23. Vogiatzis I, Simoes DC, Stratakos G, Kourepini E, Terzis G, Manta P, et al. Effect of pulmonary rehabilitation on muscle remodelling in cachectic patients with COPD. Eur Respir J. 2010;36: 301–310. doi: 10.1183/09031936.00112909 20110400

24. Yuan L, Han J, Meng Q, Xi Q, Zhuang Q, Jiang Y, et al. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study. Oncol Rep. 2015;33: 2261–2268. doi: 10.3892/or.2015.3845 25760630

25. Zhang L, Pan J, Dong Y, Tweardy DJ, Garibotto G, Mitch WE. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 2013;18(3):368–79. doi: 10.1016/j.cmet.2013.07.012 24011072

26. Lemire BB, Debigaré R, Dubé A, Thériault ME, Côté CH, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113: 159–166.

27. Plant PJ, Brooks D, Faughnan M, Bayley T, Bain J, Singer L, et al. Cellular markers of muscle atrophy in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2010;42: 461–471. doi: 10.1165/rcmb.2008-0382OC 19520920

28. Bossola M, Muscaritoli M, Costelli P, Bellantone R, Pacelli F, Busquets S, et al. Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol Regul Integr Comp Physiol. 2001;280: R1518–R1523. doi: 10.1152/ajpregu.2001.280.5.R1518 11294777

29. Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, et al. Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg. 2003;237: 384–389. doi: 10.1097/01.SLA.0000055225.96357.71 12616123

30. Bossola M, Muscaritoli M, Costelli P, Nanni G, Tazza L, Panocchia N, et al. Muscle ubiquitin m-rNA levels in patients with end-stage renal disease on maintenance hemodialysis. J Nephrol. 2002;15: 552–557. 12455723

31. Aversa Z, Pin F, Lucia S, Penna F, Verzaro R, Fazi M, et al. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep. 2016;6:30340. doi: 10.1038/srep30340 27459917

32. Debigaré R, Maltais F, Côté CH, Michaud A, Caron MA, Mofarrahi M, et al. Profiling of mRNA expression in quadriceps of patients with COPD and muscle wasting. COPD. 2008;5: 75–84. doi: 10.1080/15412550801940457 18415806

33. Puig-Vilanova E, Martínez-Llorens J, Ausin P, Roca J, Gea J, Barreiro E. Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clin Sci (Lond). 2015;128: 905–921.

34. Pessina P, Conti V, Pacelli F, Rosa F, Doglietto GB, Brunelli S, et al. Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncol Rep. 2010;24: 741–745. doi: 10.3892/or_00000916 20664982

35. Ramamoorthy S, Donohue M, Buck M. Decreased Jun-D and myogenin expression in muscle wasting of human cachexia. Am J Physiol Endocrinol Metab. 2009;297: E392–E401. doi: 10.1152/ajpendo.90529.2008 19470832

36. Op den Kamp CM, Gosker HR, Lagarde S, Tan DY, Snepvangers FJ, Dingemans AM, et al. Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia. J Cachexia Sarcopenia Muscle. 2015;6: 164–173. doi: 10.1002/jcsm.12007 26136192

37. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4: e296. doi: 10.1371/journal.pmed.0040296 17941714

38. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12: 489–495. doi: 10.1016/S1470-2045(10)70218-7 21296615

39. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147: 755–763. doi: 10.1093/oxfordjournals.aje.a009520 9554417

40. Masilamani TJ, Loiselle JJ, Sutherland LC. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol Biotechnol. 2014;56: 329–339. doi: 10.1007/s12033-013-9712-2 24146429

41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55: 611–622. doi: 10.1373/clinchem.2008.112797 19246619

42. Collins A, Ross J, Lang SH. A systematic review of the asymmetric inheritance of cellular organelles in eukaryotes: A critique of basic science validity and imprecision. PLoS One. 2017;12: e0178645. doi: 10.1371/journal.pone.0178645 28562636

43. Anoveros-Barrera A, Bhullar AS, Stretch C, Esfandiari N, Dunichand-Hoedl AR, Martins KJB, et al. Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. J Cachexia Sarcopenia Muscle. 2019. [Epub ahead of print]

44. Wilson D, Breen L, Lord JM, Sapey E. The challenges of muscle biopsy in a community based geriatric population. BMC Res Notes. 2018;11: 830. doi: 10.1186/s13104-018-3947-8 30477571

45. Organization WH. Global Database on Body Mass Index: World Health Organization; 2006 [updated 03/03/19].

46. Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, et al. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. 2017;8: 122–130. doi: 10.1002/jcsm.12138 27897403


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#