#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments


Autoři: Atsuko Sugimoto aff001;  Yoriko Yamashita aff004;  Teru Kanda aff001;  Takayuki Murata aff001;  Tatsuya Tsurumi aff001
Působiště autorů: Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan aff001;  Department of Virology, Nagoya University Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan aff002;  Department of Virology and Parasitology, Fujita Health University, School of Medicine, Toyoake, Japan aff003;  Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan aff004;  Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222519

Souhrn

Productive replication of Epstein-Barr virus (EBV) during the lytic cycle occurs in discrete sites within nuclei, termed replication compartments. We previously proposed that replication compartments consist of two subnuclear domains: “ongoing replication foci” and “BMRF1-cores”. Viral genome replication takes place in ongoing replication foci, which are enriched with viral replication proteins, such as BALF5 and BALF2. Amplified DNA and BMRF1 protein accumulate in BMRF1-cores, which are surrounded by ongoing replication foci. We here determined the locations of procapsid and genome-packaging proteins of EBV via three-dimensional (3D) surface reconstruction and correlative fluorescence microscopy-electron microscopy (FM-EM). The results revealed that viral factors required for DNA packaging, such as BGLF1, BVRF1, and BFLF1 proteins, are located in the innermost subdomains of the BMRF1-cores. In contrast, capsid structural proteins, such as BBRF1, BORF1, BDLF1, and BVRF2, were found both outside and inside the BMRF1-cores. Based on these observations, we propose a model in which viral procapsids are assembled outside the BMRF1-cores and subsequently migrate therein, where viral DNA encapsidation occurs. To our knowledge, this is the first report describing capsid assembly sites in relation to EBV replication compartments.


Zdroje

1. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310(5974):207–11. Epub 1984/07/19. doi: 10.1038/310207a0 6087149.

2. Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol. 2014;58(6):307–17. doi: 10.1111/1348-0421.12155 24786491.

3. Daikoku T, Kudoh A, Fujita M, Sugaya Y, Isomura H, Shirata N, et al. Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol. 2005;79(6):3409–18. Epub 2005/02/26. doi: 79/6/3409 [pii] doi: 10.1128/JVI.79.6.3409-3418.2005 15731235; PubMed Central PMCID: PMC1075702.

4. Fixman ED, Hayward GS, Hayward SD. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol. 1995;69(5):2998–3006. Epub 1995/05/01. 7707526; PubMed Central PMCID: PMC188999.

5. Sugimoto A, Kanda T, Yamashita Y, Murata T, Saito S, Kawashima D, et al. Spatiotemporally different DNA repair systems participate in Epstein-Barr virus genome maturation. J Virol. 2011;85(13):6127–35. Epub 2011/04/15. doi: JVI.00258-11 [pii] doi: 10.1128/JVI.00258-11 21490093; PubMed Central PMCID: PMC3126487.

6. Cho MS, Milman G, Hayward SD. A second Epstein-Barr virus early antigen gene in BamHI fragment M encodes a 48- to 50-kilodalton nuclear protein. J Virol. 1985;56(3):860–6. Epub 1985/12/01. 2999442; PubMed Central PMCID: PMC252658.

7. Li JS, Zhou BS, Dutschman GE, Grill SP, Tan RS, Cheng YC. Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. J Virol. 1987;61(9):2947–9. Epub 1987/09/01. 3039183; PubMed Central PMCID: PMC255833.

8. Tsurumi T, Daikoku T, Kurachi R, Nishiyama Y. Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol. 1993;67(12):7648–53. Epub 1993/12/01. 8230484; PubMed Central PMCID: PMC238234.

9. Daikoku T, Kudoh A, Sugaya Y, Iwahori S, Shirata N, Isomura H, et al. Postreplicative mismatch repair factors are recruited to Epstein-Barr virus replication compartments. J Biol Chem. 2006;281(16):11422–30. Epub 2006/03/03. doi: M510314200 [pii] doi: 10.1074/jbc.M510314200 16510450.

10. Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, Murata T, et al. Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol. 2009;83(13):6641–51. Epub 2009/04/24. doi: JVI.00049-09 [pii] doi: 10.1128/JVI.00049-09 19386720; PubMed Central PMCID: PMC2698542.

11. Sugimoto A, Sato Y, Kanda T, Murata T, Narita Y, Kawashima D, et al. Different distributions of Epstein-Barr virus early and late gene transcripts within viral replication compartments. J Virol. 2013;87(12):6693–9. doi: 10.1128/JVI.00219-13 23552415; PubMed Central PMCID: PMCPMC3676136.

12. Conway JF, Homa FL. Nucleocapsid structure, assembly and DNA packaging of herpes simplex virus. In: Weller SK, editor. Alphaherpesviruses. Norwich, United Kingdom.: Caister Academic Press; 2011. p. 175–93.

13. Henson BW, Perkins EM, Cothran JE, Desai P. Self-assembly of Epstein-Barr virus capsids. J Virol. 2009;83(8):3877–90. Epub 2009/01/23. doi: 10.1128/JVI.01733-08 19158247; PubMed Central PMCID: PMCPMC2663254.

14. Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, et al. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A. 2004;101(46):16286–91. Epub 2004/11/10. doi: 0407320101 [pii] doi: 10.1073/pnas.0407320101 15534216; PubMed Central PMCID: PMC528973.

15. Newcomb WW, Trus BL, Booy FP, Steven AC, Wall JS, Brown JC. Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol. 1993;232(2):499–511. Epub 1993/07/20. doi: S0022-2836(83)71406-3 [pii] doi: 10.1006/jmbi.1993.1406 8393939.

16. Zhou ZH, He J, Jakana J, Tatman JD, Rixon FJ, Chiu W. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol. 1995;2(11):1026–30. Epub 1995/11/01. 7583656.

17. Germi R, Effantin G, Grossi L, Ruigrok RW, Morand P, Schoehn G. Three-dimensional structure of the Epstein-Barr virus capsid. J Gen Virol. 2012;93(Pt 8):1769–73. doi: 10.1099/vir.0.043265-0 22592267.

18. Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, et al. The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol. 1996;263(3):447–62. Epub 1996/11/01. doi: S0022-2836(96)80018-0 [pii]. doi: 10.1016/s0022-2836(96)80018-0 8918600.

19. Kim HS, Huang E, Desai J, Sole M, Pryce EN, Okoye ME, et al. A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. J Virol. 2011;85(23):12698–707. Epub 2011/10/01. doi: JVI.05791-11 [pii] doi: 10.1128/JVI.05791-11 21957296; PubMed Central PMCID: PMC3209348.

20. Booy FP, Trus BL, Newcomb WW, Brown JC, Conway JF, Steven AC. Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci U S A. 1994;91(12):5652–6. Epub 1994/06/07. doi: 10.1073/pnas.91.12.5652 8202543; PubMed Central PMCID: PMC44054.

21. Newcomb WW, Trus BL, Cheng N, Steven AC, Sheaffer AK, Tenney DJ, et al. Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J Virol. 2000;74(4):1663–73. Epub 2000/01/22. doi: 10.1128/jvi.74.4.1663-1673.2000 10644336; PubMed Central PMCID: PMC111641.

22. Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J Virol. 2000;74(15):6838–48. Epub 2000/07/11. doi: 10.1128/jvi.74.15.6838-6848.2000 10888623; PubMed Central PMCID: PMC112201.

23. Loret S, Guay G, Lippe R. Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol. 2008;82(17):8605–18. Epub 2008/07/04. doi: JVI.00904-08 [pii] doi: 10.1128/JVI.00904-08 18596102; PubMed Central PMCID: PMC2519676.

24. McNab AR, Desai P, Person S, Roof LL, Thomsen DR, Newcomb WW, et al. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol. 1998;72(2):1060–70. Epub 1998/01/28. 9445000; PubMed Central PMCID: PMC124578.

25. Toropova K, Huffman JB, Homa FL, Conway JF. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol. 2011;85(15):7513–22. Epub 2011/06/03. doi: 10.1128/JVI.00837-11 21632758; PubMed Central PMCID: PMCPMC3147944.

26. Kudoh A, Fujita M, Kiyono T, Kuzushima K, Sugaya Y, Izuta S, et al. Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol. 2003;77(2):851–61. doi: 10.1128/JVI.77.2.851-861.2003 12502801; PubMed Central PMCID: PMCPMC140784.

27. Chi JH, Wilson DW. ATP-Dependent localization of the herpes simplex virus capsid protein VP26 to sites of procapsid maturation. J Virol. 2000;74(3):1468–76. Epub 2000/01/11. doi: 10.1128/jvi.74.3.1468-1476.2000 10627558; PubMed Central PMCID: PMC111482.

28. Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, et al. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Molecular cell. 2007;26(4):479–89. Epub 2007/05/29. doi: 10.1016/j.molcel.2007.04.010 17531807; PubMed Central PMCID: PMCPMC1945812.

29. Taus NS, Salmon B, Baines JD. The herpes simplex virus 1 UL 17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged. Virology. 1998;252(1):115–25. Epub 1999/01/06. doi: 10.1006/viro.1998.9439 9875322.

30. Albright BS, Kosinski A, Szczepaniak R, Cook EA, Stow ND, Conway JF, et al. The putative herpes simplex virus 1 chaperone protein UL32 modulates disulfide bond formation during infection. J Virol. 2015;89(1):443–53. Epub 2014/10/17. doi: 10.1128/JVI.01913-14 25320327; PubMed Central PMCID: PMCPMC4301124.

31. Pavlova S, Feederle R, Gartner K, Fuchs W, Granzow H, Delecluse HJ. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA. J Virol. 2013;87(4):2011–22. doi: 10.1128/JVI.02533-12 23236073; PubMed Central PMCID: PMCPMC3571473.

32. Visalli RJ, Schwartz AM, Patel S, Visalli MA. Identification of the Epstein Barr Virus portal. Virology. 2019;529:152–9. Epub 2019/02/03. doi: 10.1016/j.virol.2019.01.003 30710799.

33. Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, et al. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol. 2001;75(22):10923–32. Epub 2001/10/17. doi: 10.1128/JVI.75.22.10923-10932.2001 11602732; PubMed Central PMCID: PMCPMC114672.

34. Wang WH, Kuo CW, Chang LK, Hung CC, Chang TH, Liu ST. Assembly of Epstein-Barr Virus Capsid in Promyelocytic Leukemia Nuclear Bodies. J Virol. 2015;89(17):8922–31. Epub 2015/06/19. doi: 10.1128/JVI.01114-15 26085145; PubMed Central PMCID: PMCPMC4524052.

35. Albright BS, Nellissery J, Szczepaniak R, Weller SK. Disulfide bond formation in the herpes simplex virus 1 UL6 protein is required for portal ring formation and genome encapsidation. J Virol. 2011;85(17):8616–24. Epub 2011/05/20. doi: JVI.00123-11 [pii] doi: 10.1128/JVI.00123-11 21593161; PubMed Central PMCID: PMC3165836.

36. Murayama K, Nakayama S, Kato-Murayama M, Akasaka R, Ohbayashi N, Kamewari-Hayami Y, et al. Crystal structure of epstein-barr virus DNA polymerase processivity factor BMRF1. J Biol Chem. 2009;284(51):35896–905. doi: 10.1074/jbc.M109.051581 19801550; PubMed Central PMCID: PMCPMC2791018.

37. Bruck I, O'Donnell M. The ring-type polymerase sliding clamp family. Genome Biol. 2001;2(1):REVIEWS3001. Epub 2001/02/24. doi: 10.1186/gb-2001-2-1-reviews3001 11178284; PubMed Central PMCID: PMC150441.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#