#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: A biomechanical study using an osteoporotic bone model


Autoři: Haruo Kanno aff001;  Toshimi Aizawa aff001;  Ko Hashimoto aff001;  Eiji Itoi aff001
Působiště autorů: Department of Orthopedic Surgery, Tohoku University School of Medicine, Sendai, Japan aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223106

Souhrn

Introduction

Percutaneous pedicle screw (PPS) can provide internal fixation of the thoracolumbar spine through a minimally invasive surgical procedure. PPS fixation has been widely used to treat various spinal diseases. Rigid fixation of PPS is essential for managing osteoporotic spine in order to prevent the risks of screw loosening and implant failure. We recently developed a novel augmentation method using hydroxyapatite (HA) granules for PPS fixation. The aim of this study was to evaluate the strength and stiffness of PPS fixation augmented with HA granules using an osteoporotic bone model.

Methods

Screws were inserted into uniform synthetic bone (sawbones) with and without augmentation. The uniaxial pullout strength and insertion torque of the screws were evaluated. In addition, each screw underwent cyclic toggling under incrementally increasing physiological loads until 2 mm of screwhead displacement occurred. The maximal pullout strength (N), maximal insertion torque (N·cm), number of toggle cycles and maximal load (N) required to achieve 2-mm screwhead displacement were compared between the screws with and without augmentation.

Results

The maximal pullout strength was significantly stronger for screws with augmentation than for those without augmentation (302 ± 19 N vs. 254 ± 17 N, p < 0.05). In addition, the maximal insertion torque was significantly increased in screws with augmentation compared to those without augmentation (48 ± 4 N·cm vs. 26 ± 5 N·cm, p < 0.05). Furthermore, the number of toggle cycles and the maximal load required to reach 2 mm of displacement were significantly greater in screws with augmentation than in those without augmentation (106 ± 9 vs. 52 ± 10 cycles; 152 ± 4 N vs. 124 ± 5 N, p < 0.05).

Conclusions

Augmentation using HA granules significantly enhanced the rigidity of PPS fixation in the osteoporotic bone model. The present study suggested that novel augmentation with HA granules may be a useful technique for PPS fixation in patients with osteoporotic spine.

Klíčová slova:

Minimally invasive surgery – Spine – Stiffness – Surgical and invasive medical procedures – Foams – Torque – Polyurethanes – Bone and joint mechanics


Zdroje

1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75. doi: 10.1359/jbmr.061113 17144789

2. Melton LJ. Epidemiology of spinal osteoporosis. Spine. 1997;22(24 Suppl):2S–11S. doi: 10.1097/00007632-199712151-00002 9431638

3. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144–51. doi: 10.1097/01.brs.0000236893.65878.39 16946632

4. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke H-J. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015;24(5):1005–16. doi: 10.1007/s00586-015-3768-6 25616349

5. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine. 1993;18(15):2231–8- discussion 8–9. doi: 10.1097/00007632-199311000-00015 8278838

6. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine. 2000;25(7):858–64. doi: 10.1097/00007632-200004010-00015 10751298

7. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7. 14588296

8. Murakami H, Tsai K-J, Attallah-Wasif ES, Yamazaki K, Shimamura T, Hutton WC. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation. Spine. 2006;31(9):967–71. doi: 10.1097/01.brs.0000214932.49027.6a 16641771

9. Hongo M, Gay RE, Zhao KD, Ilharreborde B, Huddleston PM, Berglund LJ, et al. Junction kinematics between proximal mobile and distal fused lumbar segments: biomechanical analysis of pedicle and hook constructs. Spine J. 2009;9(10):846–53. doi: 10.1016/j.spinee.2009.06.019 19660990

10. Hasegawa K, Takahashi HE, Uchiyama S, Hirano T, Hara T, Washio T, et al. An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine. Spine. 1997;22(9):958–63. doi: 10.1097/00007632-199705010-00004 9152444

11. Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine. J Spinal Disord Tech. 2010;23(2):127–32. doi: 10.1097/BSD.0b013e31819942cd 20051920

12. Hongo M, Ilharreborde B, Gay RE, Zhao C, Zhao KD, Berglund LJ, et al. Biomechanical evaluation of a new fixation device for the thoracic spine. Eur Spine J. 2009;18(8):1213–9. doi: 10.1007/s00586-009-0999-4 19404687

13. Burval DJ, McLain RF, Milks R, İnceoğlu S. Primary Pedicle Screw Augmentation in Osteoporotic Lumbar Vertebrae. Spine. 2007;32(10):1077–83. doi: 10.1097/01.brs.0000261566.38422.40 17471088

14. Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, et al. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J. 2008;17(11):1462–9. doi: 10.1007/s00586-008-0769-8 18781342

15. Koller H, Zenner J, Hitzl W, Resch H, Stephan D, Dr PAP, et al. The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. Spine J. 2013;13(5):532–41. doi: 10.1016/j.spinee.2013.01.038 23415899

16. Vishnubhotla S, McGarry WB, Mahar AT, Gelb DE. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J. 2011;11(8):777–81. doi: 10.1016/j.spinee.2011.06.006 21802996

17. Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, et al. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine. 2009;34(4):335–43. doi: 10.1097/BRS.0b013e318194878d 19182704

18. Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim T-H, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005;5(3):239–43. doi: 10.1016/j.spinee.2004.11.010 15863077

19. Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br. 2010;92(8):1061–5. doi: 10.1302/0301-620X.92B8.24237 20675747

20. Lehman RA, Kang DG, Wagner SC. Management of osteoporosis in spine surgery. J Am Acad Orthop Surg. 2015;23(4):253–63. doi: 10.5435/JAAOS-D-14-00042 25808687

21. Yi S, Rim D-C, Park SW, Murovic JA, Lim J, Park J. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine. World Neurosurg. 2015;83(6):976–81. doi: 10.1016/j.wneu.2015.01.056 25769482

22. Spivak JM, Neuwirth MG, Labiak JJ, Kummer FJ, Ricci JL. Hydroxyapatite enhancement of posterior spinal instrumentation fixation. Spine. 1994;19(8):955–64. doi: 10.1097/00007632-199404150-00015 8009355

23. Hasegawa K, Yamamura S, Dohmae Y. Enhancing screw stability in osteosynthesis with hydroxyapatite granules. Arch Orthop Trauma Surg. 1998;117(3):175–6. 9521527

24. Yerby SA, Toh E, McLain RF. Revision of failed pedicle screws using hydroxyapatite cement. A biomechanical analysis. Spine (Phila Pa 1976). 1998;23(15):1657–61.

25. Matsuzaki H, Tokuhashi Y, Wakabayashi K, Okawa A, Hagiwara H, Iwahashi M. Effects of hydroxyapatite solid granule (HA Stick) on pedicle screwing for osteoporotic patients Clincal Orthopaedic Surgery. 2001;36:529–34.

26. Lotz JC, Hu SS, Chiu DF, Yu M, Colliou O, Poser RD. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine. 1997;22(23):2716–23. doi: 10.1097/00007632-199712010-00003 9431604

27. Spivak JM, Hasharoni A. Use of hydroxyapatite in spine surgery. Eur Spine J. 2001;10 Suppl 2:S197–204.

28. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res B Appl Biomater. 2002;59(1):110–7.

29. Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine. 2003;28(15 Suppl):S26–35. doi: 10.1097/01.BRS.0000076895.52418.5E 12897471

30. Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18(6):741–9. doi: 10.1016/j.jocn.2010.09.019 21514165

31. Ringel F, Stoffel M, Stüer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery. 2006;59(4 Suppl 2):ONS361–6- discussion ONS6-7. doi: 10.1227/01.NEU.0000223505.07815.74 17041505

32. Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine. 2009;34(11):1239–42. doi: 10.1097/BRS.0b013e31819e2c5c 19444073

33. Zhang W, Li H, Zhou Y, Wang J, Chu T, Zheng W, et al. Minimally Invasive Posterior Decompression Combined With Percutaneous Pedicle Screw Fixation for the Treatment of Thoracolumbar Fractures With Neurological Deficits. Spine. 2016;41:B23–B9. doi: 10.1097/BRS.0000000000001814 27656782

34. Gu G, Zhang H, He S, Cai X, Gu X, Jia J, et al. Percutaneous Pedicle Screw Placement in the Lumbar Spine: A Comparison Study Between the Novel Guidance System and the Conventional Fluoroscopy Method. J Spinal Disord Tech. 2015;28(9):E522–7. doi: 10.1097/BSD.0b013e3182aab222 24077412

35. Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):E10. 16732626

36. Kuklo TR, Dmitriev AE, Cardoso MJ, Lehman RA, Erickson M, Gill NW. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws. Spine. 2008;33(15):E482–7. doi: 10.1097/BRS.0b013e31817c64d5 18594445

37. Chutkan NB, Zhou H, Akins JP, Wenger KH. Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion. Spine. 2008;33(22):E828–35. doi: 10.1097/BRS.0b013e318183bb6d 18923306

38. Ohba T, Ebata S, Oba H, Koyama K, Haro H. Risk factors for clinically relevant loosening of percutaneous pedicle screws. Spine Surg Relat Res. 2019;3(1):79–85. doi: 10.22603/ssrr.2018-0018 31435556

39. Park Y, Seok S-O, Lee S-B, Ha J-W. Minimally Invasive Lumbar Spinal Fusion Is More Effective Than Open Fusion: A Meta-Analysis. Yonsei Med J. 2018;59(4):524–38. doi: 10.3349/ymj.2018.59.4.524 29749136

40. Son S, Lee SG, Park CW, Kim WK. Minimally invasive multilevel percutaneous pedicle screw fixation for lumbar spinal diseases. Korean J Spine. 2012;9(4):352–7. doi: 10.14245/kjs.2012.9.4.352 25983845

41. Kanno H. Augmentation of percutaneous pedicle screw fixation: Novel method using hydroxyapatite granules and effectiveness of teriparatide. J MIOS. 2018;87:81–8.

42. Chao KH, Lai YS, Chen WC, Chang CM, McClean CJ, Fan CY, et al. Biomechanical analysis of different types of pedicle screw augmentation: a cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys. 2013;35(10):1506–12. doi: 10.1016/j.medengphy.2013.04.007 23669371

43. Seng WRD, Chou SM, Siddiqui SS, Oh JYL. Pedicle Screw Designs in Spinal Surgery: Is There a Difference? A Biomechanical Study on Primary and Revision Pull-Out Strength. Spine. 2019;44(3):E144–E9. doi: 10.1097/BRS.0000000000002789 30005047

44. Brady PC, Arrigoni P, Burkhart SS. What do you do when you have a loose screw? Arthroscopy. 2006;22(9):925–30. doi: 10.1016/j.arthro.2006.04.103 16952719

45. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118(3):391–8. doi: 10.1115/1.2796022 8872262

46. Kawakami J, Yamamoto N, Nagamoto H, Itoi E. Minimum Distance of Suture Anchors Used for Rotator Cuff Repair Without Decreasing the Pullout Strength: A Biomechanical Study. Arthroscopy. 2018;34(2):377–85. doi: 10.1016/j.arthro.2017.07.022 28987400

47. ASTM, F1839-08. Standard specification for rigid polyurethane foam for use as a standard material for testing orthopaedic devices and instruments. Annual Book of ASTM Standards, Medical Devices and Services. ed. Annual Book of ASTM Standards MDaS, editor. West Conshohocken, PA: ASTM International; 2011.

48. Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine (Phila Pa 1976). 2006;31(23):E867–70.

49. Hughes M, Papadakos N, Bishop T, Bernard J. Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model. SICOT J. 2018;4:15. doi: 10.1051/sicotj/2018009 29727270

50. Kiyak G, Balikci T, Heydar AM, Bezer M. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model. Asian Spine J. 2018;12(1):3–11. doi: 10.4184/asj.2018.12.1.3 29503676

51. Sakamoto M, Nakasu M, Matsumoto T, Okihana H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res B Appl Biomater. 2007;82A(1):238–42.

52. Raley DA, Mobbs RJ. Retrospective Computed Tomography Scan Analysis of Percutaneously Inserted Pedicle Screws for Posterior Transpedicular Stabilization of the Thoracic and Lumbar Spine. Spine. 2012;37(12):1092–100. doi: 10.1097/BRS.0b013e31823c80d8 22037528

53. Zhu Q, Kingwell S, Li Z, Pan H, Lu WW, Oxland TR. Enhancing pedicle screw fixation in the aging spine with a novel bioactive bone cement: an in vitro biomechanical study. Spine. 2012;37(17):E1030–E7. doi: 10.1097/BRS.0b013e31825a676e 22531472

54. Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. Spine Journal. 2012;12(2):164–8. doi: 10.1016/j.spinee.2012.01.014 22336467

55. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, MAWH MS, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366–73. doi: 10.1016/j.spinee.2008.07.008 18790684

56. Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. Spine. 1993;18(15):2240–5. doi: 10.1097/00007632-199311000-00016 8278839

57. Baluch DA, Patel AA, Lullo B, Havey RM, Voronov LI, Nguyen N-L, et al. Effect of Physiological Loads on Cortical and Traditional Pedicle Screw Fixation. Spine. 2014;39(22):E1297–E302. doi: 10.1097/BRS.0000000000000553 25099320

58. Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, et al. Structural characteristics of the pedicle and its role in screw stability. Spine. 1997;22(21):2504–9. doi: 10.1097/00007632-199711010-00007 9383856

59. Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine. 1993;18(16):2438–43. doi: 10.1097/00007632-199312000-00012 8303446

60. Tokuhashi Y, Matsuzaki H, Oda H, Uei H. Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine. 2008;33(8):903–8. doi: 10.1097/BRS.0b013e31816b1eff 18404111

61. İnceoğlu S, Montgomery J, William H, Clair SS, McLain RF. Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies. J Neurosurg Spine. 2011:1–7.

62. Hashemi A, Bednar Drew MD FF, PhD Z S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: An experimental study. Spine J. 2009;9(5):404–10. doi: 10.1016/j.spinee.2008.07.001 18790679

63. Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004;4(4):402–8. doi: 10.1016/j.spinee.2003.11.010 15246300

64. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives of Osteoporosis. 2013;8:136. doi: 10.1007/s11657-013-0136-1 24113837

65. Borgström F, Lekander I, Ivergård M, Ström O, Svedbom A, Alekna V, et al. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS)—quality of life during the first 4 months after fracture. Osteoporos Int. 2013;24(3):811–23. doi: 10.1007/s00198-012-2240-2 23306819

66. Deyo RA, Hickam D, Duckart JP, Piedra M. Complications after surgery for lumbar stenosis in a veteran population. Spine. 2013;38(19):1695–702. doi: 10.1097/BRS.0b013e31829f65c1 23778366

67. Schoenfeld AJ, Carey PA, Cleveland AW, Bader JO, Bono CM. Patient factors, comorbidities, and surgical characteristics that increase mortality and complication risk after spinal arthrodesis: a prognostic study based on 5,887 patients. Spine J. 2013;13(10):1171–9. doi: 10.1016/j.spinee.2013.02.071 23578986

68. Than KD, Mummaneni PV, Bridges KJ, Tran S, Park P, Chou D, et al. Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg Focus. 2017;43(6):E7. doi: 10.3171/2017.8.FOCUS17479 29191098

69. Versteeg AL, Verlaan J-J, de Baat P, Jiya TU, Stadhouder A, Diekerhof CH, et al. Complications After Percutaneous Pedicle Screw Fixation for the Treatment of Unstable Spinal Metastases. Annals of surgical oncology. 2016;23(7):2343–9. doi: 10.1245/s10434-016-5156-9 26965698

70. Hu SS. Internal fixation in the osteoporotic spine. Spine. 1997;22(24 Suppl):43S–8S. doi: 10.1097/00007632-199712151-00008 9431644

71. Shin SJ, Lee J-H, Lee JH. Influence of Hydroxyapatite Stick on Pedicle Screw Fixation in Degenerative Lumbar Spine: Biomechanical and Radiologic Study. Clinical spine surgery. 2017;30(6):E819–E26. doi: 10.1097/BSD.0000000000000405 27352365

72. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine. 2013;38(8):E487–92. doi: 10.1097/BRS.0b013e31828826dd 23354115

73. Elder BD, Lo S-FL, Holmes C, Goodwin CR, Kosztowski TA, Lina IA, et al. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015;15(6):1432–45. doi: 10.1016/j.spinee.2015.03.016 25797809

74. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6 Suppl):305S–16S. doi: 10.1016/j.spinee.2005.02.020 16291128

75. Derincek A, Wu C, Mehbod A, Transfeldt EE. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. J Spinal Disord Tech. 2006;19(4):286–91. doi: 10.1097/01.bsd.0000211203.31244.a0 16778665

76. Wu Z-x, Gong F-t, Liu L, Ma Z-s, Zhang Y, Zhao X, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012;132(4):471–6. doi: 10.1007/s00402-011-1439-6 22146812


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#