Enhanced effectiveness of oil dispersants in destabilizing water-in-oil emulsions


Autoři: Gerald F. John aff001;  Joel S. Hayworth aff002
Působiště autorů: Science and Technology Department, Bryant University, Smithfield, Rhode Island, United States of America aff001;  Civil Engineering Department, Auburn University, Auburn, Alabama, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222460

Souhrn

Oil impacting the northern Gulf of Mexico shoreline from the 2010 Deepwater Horizon accident was predominantly in the form of water-in-oil emulsions (WOE), a chemically weathered, highly viscous, neutrally buoyant material. Once formed, WOE are extremely difficult to destabilize. Commercially-available oil dispersants are largely ineffective de-emulsifiers as a result of the inability of dispersant surfactants to displace asphaltenes stabilizing the oil-water interface. This study investigated the effectiveness of the commercially-available dispersant Corexit 9500A, modified to enhance its polar fraction, in destabilizing WOE. Results suggest that Corexit modified to include between 20–60% fractional amount of either polar additive (1-octanol or hexylamine) will produce a modest increase in WOE instability, with a Corexit to hexylamine ratio of approximately 80/20 providing the most effective enhanced destabilization. Results support the hypothesis that modifying the fraction of polar constituents in commercial dispersants will increase asphaltene solubility, decrease oil-water interface stability, and enhance WOE instability.

Klíčová slova:

Physical sciences – Chemistry – Chemical properties – Physical chemistry – Materials science – Materials physics – Viscosity – Materials – Mixtures – Colloids – Emulsions – Fuels – Fossil fuels – Crude oil – Surfactants – Physics – Classical mechanics – Mechanical stress – Shear stresses – Continuum mechanics – Fluid mechanics – Surface tension – Biology and life sciences – Biochemistry – Lipids – Oils – Engineering and technology – Energy and power


Zdroje

1. Lehr B, Bristol S, Possolo A. Oil Budget Calculator, Deepwater Horizon [Technical Documentation]. The Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team; 2010 [updated February 19, 2015February 19, 2015]. Available from: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf.

2. McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, et al. Review of flow rate estimates of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences. 2012;109(50):20260–7. doi: 10.1073/pnas.1112139108 22187459

3. Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, et al. Fallout plume of submerged oil from Deepwater Horizon. Proceedings of the National Academy of Sciences. 2014;111(45):5.

4. Chanton J, Zhao T, Rosenheim BE, Joye SB, Bosman S, Brunner CA, et al. Using Natural Abundance Radiocarbon to trace the Flux of Petrocarbon to the Seafloor following the Deepwater Horizon Oil Spill. Environmental science & technology. 2014;49:8.

5. Hayworth J, Clement T, Valentine J. Deepwater Horizon oil spill impacts on Alabama beaches. Hydrology and Earth System Sciences. 2011;15(12):3639.

6. Hayworth JS, Clement TP. BP’s Operation Deep Clean Could Dilution be the Solution to Beach Pollution? Environmental Science and Technology-Columbus. 2011;45(10):4201.

7. Michel J, Owens EH, Zengel S, Graham A, Nixon Z, Allard T, et al. Extent and Degree of Shoreline Oiling: Deepwater Horizon Oil Spill, Gulf of Mexico, USA. PLoS ONE. 2013;8(6):e65087. doi: 10.1371/journal.pone.0065087 23776444

8. OSAT-3. Investigation of Recurring Residual Oil in Discrete Shoreline Areas in the Eastern Area of Responsibility. (Accessed on March 3, 2014. Available at: http://www.restorethegulf.gov/sites/default/files/u372/OSAT%20III%20Eastern%20States.pdf). 2013.

9. Daling PS, StrØm T. Weathering of Oils at Sea: Model/Field Data Comparisons. Spill Science & Technology Bulletin. 1999;5(1):63–74. doi: http://dx.doi.org/10.1016/S1353-2561(98)00051-6

10. Liu Z, Liu J, Zhu Q, Wu W. The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environmental research letters. 2012;7(035302):14.

11. Fingas MF, Fieldhouse B, Bier I, Conrod D, Tennyson EJ, editors. Development of a test for water-in-oil emulsion breakers. Proceedings of the Sixteenth Arctic and Marine Oil Spill Program Technical Seminar; 1993; Calgary, Alberta, Canada.

12. Fingas MF, Fieldhouse B. Formation of water-in-oil emulsions and application to oil spill modeling. Journal of Hazardous Materials. 2004;107(1–2):14.

13. Hayworth JS, Clement TP. Provenance of Corexit-related chemical constituents found in nearshore and inland Gulf Coast waters. Marine Pollution Bulletin. 2012;64:10.

14. Fingas M, Fieldhouse B. Studies of the formation process of water-in-oil emulsions. Marine Pollution Bulletin. 2003;47(9–12):369–96. http://dx.doi.org/10.1016/S0025-326X(03)00212-1. doi: 10.1016/S0025-326X(03)00212-1 12899884

15. McLean JD, Kilpatrick PK. Effects of asphaltene solvency on stability of water-in-crude-oil emulsions. J Colloid and Interface Sci. 1997;189:12.

16. McLean JD, Spiecker PM, Sullivan AP, Kilpatrick PK. The role of petroleum asphaltenes in the stabilization of water-in-oil emulsions. In: Mullins OC, Sheu EY, editors. Structure and Dynamics of Asphaltenes: Plenum Press, New York; 1998.

17. Clayton JR, Payne JR, Farlow JS, Sarwar C. Oil spill dispersants: mechanisms of action and laboratory tests. Science Applications International Corp., San Diego, CA (United States), 1993.

18. Fingas M, Fieldhouse B, Mullin J, editors. Studies of water-in-oil emulsions and techniques to measure emulsion treating agents. ARCTIC AND MARINE OILSPILL PROGRAM TECHNICAL SEMINAR; 1994: MINISTRY OF SUPPLY AND SERVICES, CANADA.

19. SLRERL, ALC, Inc M. DISPERSANT EFFECTIVENESS TESTING ON WATER-IN-OIL EMULSIONS AT OHMSETT For U.S. Department of the Interior Minerals Management Service Herndon, VA. (Available at: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2010114956.xhtml. Accessed on November 29, 2016). 2006.

20. Council NR. Oil Spill Dispersants: Efficacy and Effects. Washington, DC: The National Academies Press; 2005. 396 p.

21. Pelz O, Brown J, Huddleston M, Rand G, Gardinali P, Stubbefield W, et al. Selection of a Surrogate MC252 Oil as a Reference Material for Future Aquatic Toxicity Tests and Other Studies (Available at: http://gulfresearchinitiative.org/wp-content/uploads/2012/05/Surrogate-Oil-selection-Paper-at-SETAC.pdf. Accessed on December 2, 2016). 2012.

22. Sjöblom J, Aske N, Harald Auflem I, Brandal Ø, Erik Havre T, Sæther Ø, et al. Our current understanding of water-in-crude oil emulsions.: Recent characterization techniques and high pressure performance. Advances in Colloid and Interface Science. 2003;100–102(0):399–473. http://dx.doi.org/10.1016/S0001-8686(02)00066-0.

23. Wasan DT, McNamara JJ, Shah SM, Sampath K, Aderangi N. The Role of Coalescence Phenomena and Interfacial Rheological Properties in Enhanced Oil Recovery: An Overview. Journal of Rheology. 1979;23(2):181–207.

24. Sjöblom J, Söderlund H, Lindblad S, Johansen EJ, Skjärvö IM. Water-in-crude oil emulsions from the Norwegian continental shelf. Colloid Polym Sci. 1990;268(4):389–98. doi: 10.1007/bf01411682

25. Venosa AD, Holder EL. Determining the dispersibility of South Louisiana crude oil by eight oil dispersant products listed on the NCP Product Schedule. Marine Pollution Bulletin. 2013;66(1–2):73–7. http://dx.doi.org/10.1016/j.marpolbul.2012.11.009. doi: 10.1016/j.marpolbul.2012.11.009 23211999

26. Fingas M, Fieldhouse B, Mullin J, editors. Studies of Water-in-Oil Emulsions: The Role of Asphaltenes and Resins. Proceedings of the Nineteenth Arctic Marine Oilspill Program Technical Seminar, Environment Canada; 1996; Ottawa, Ontario, Canada.

27. D4006-16 A. Standard Test Method for Water in Crude Oil by Distillation. (DOI: https://doi.org/10.1520/D4006-16). West Conshohocken, PA: ASTM International, 2016.

28. D3279-12 A. Standard Method for n-Heptane Insolubles. (DOI: https://doi.org/10.1520/D3279-12). West Conshohocken: ASTM International, 2012.

29. Venosa AD, King DW, Sorial GA. The Baffled Flask Test for Dispersant Effectiveness: A Round Robin Evaluation of Reproducibility and Repeatability. Spill Science & Technology Bulletin. 2002;7(5–6):299–308. http://dx.doi.org/10.1016/S1353-2561(02)00072-5.

30. Chandrasekar S, Sorial GA, Weaver JW. Dispersant effectiveness on oil spills–impact of salinity. ICES Journal of Marine Science. 2006;63(8):1418–30.

31. Kaku VJ, Boufadel MC, Venosa AD. Evaluation of mixing energy in laboratory flasks used for dispersant effectiveness testing. Journal of environmental engineering. 2006;132(1):93–101.

32. Boersma WH, Laven J, Stein HN. Shear thickening (dilatancy) in concentrated dispersions. AIChE Journal. 1990;36(3):321–32. doi: 10.1002/aic.690360302

33. Kokal SL. Crude oil emulsions: A state-of-the-art review. SPE Production & facilities. 2005;20(01):5–13.

34. Djuve J, Yang X, Fjellanger IJ, Sjöblom J, Pelizzetti E. Chemical destabilization of crude oil based emulsions and asphaltene stabilized emulsions. Colloid Polym Sci. 2001;279(3):232–9. doi: 10.1007/s003960000413


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Výhody léčby pacientů s DM 2. typu GLP-1 agonisty
nový kurz
Autoři: prof. MUDr. Martin Haluzík, DrSc.

Syndrom suchého oka – diagnostika, komplikace a léčba
Autoři: MUDr. Petr Výborný, CSc., FEBO

Systémová léčba psoriázy
Autoři: MUDr. Jiří Horažďovský, Ph.D

Klinická farmakokinetika betablokátorů
Autoři:

Současné možnosti terapie osteoartrózy
Autoři: MUDr. Jakub Holešovský

Všechny kurzy
Kurzy Doporučená témata