EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics

Autoři: Jan Salecker aff001;  Claudia Dislich aff001;  Kerstin Wiegand aff001;  Katrin M. Meyer aff001;  Guy Pe´er aff003
Působiště autorů: Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Germany aff001;  Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, Germany aff002;  Synthesis Centre (sDiv) of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany aff003;  UFZ - Helmholtz Centre for Environmental Research, Dept. Economics and Dept. Ecosystem Services, Leipzig, Germany aff004;  University of Leipzig, Leipzig, Germany aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222949


Spatially-explicit simulation models are commonly used to study complex ecological and socio-economic research questions. Often these models depend on detailed input data, such as initial land-cover maps to set up model simulations. Here we present the landscape generator EFFortS-LGraf that provides artificially-generated land-use maps of agricultural landscapes shaped by small-scale farms. EFForTS-LGraf is a process-based landscape generator that explicitly incorporates the human dimension of land-use change. The model generates roads and villages that consist of smallholder farming households. These smallholders use different establishment strategies to create fields in their close vicinity. Crop types are distributed to these fields based on crop fractions and specialization levels. EFForTS-LGraf model parameters such as household area or field size frequency distributions can be derived from household surveys or geospatial data. This can be an advantage over the abstract parameters of neutral landscape generators. We tested the model using oil palm and rubber farming in Indonesia as a case study and validated the artificially-generated maps against classified satellite images. Our results show that EFForTS-LGraf is able to generate realistic land-cover maps with properties that lie within the boundaries of landscapes from classified satellite images. An applied simulation experiment on landscape-level effects of increasing household area and crop specialization revealed that larger households with higher specialization levels led to spatially more homogeneous and less scattered crop type distributions and reduced edge area proportion. Thus, EFForTS-LGraf can be applied both to generate maps as inputs for simulation modelling and as a stand-alone tool for specific landscape-scale analyses in the context of ecological-economic studies of smallholder farming systems.

Klíčová slova:

Agent-based modeling – Agriculture – Crops – Gene mapping – Oil palm – Rubber – Simulation and modeling – Indonesia


1. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, et al. The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change. 2001;11(4):261–269. doi: 10.1016/S0959-3780(01)00007-3

2. Schulze J, Müller B, Groeneveld J, Grimm V. Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward. Journal of Artificial Societies and Social Simulation. 2017;20(2):8. doi: 10.18564/jasss.3423

3. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Annals of the Association of American Geographers. 2003;93(2):314–337. doi: 10.1111/1467-8306.9302004

4. Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM. Agent-based land-use models: a review of applications. Landscape Ecology. 2007;22(10):1447–1459. doi: 10.1007/s10980-007-9135-1

5. Ayllón D, Railsback SF, Vincenzi S, Groeneveld J, Almodóvar A. InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change. Ecological Modelling. 2016;326:36–53. doi: 10.1016/j.ecolmodel.2015.07.026

6. Tietjen B. Same rainfall amount different vegetation—How environmental conditions and their interactions influence savanna dynamics. Ecological Modelling. 2016;326:13–22. doi: 10.1016/j.ecolmodel.2015.06.013

7. Langhammer M, Thober J, Lange M, Frank K, Grimm V. Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions. Ecological Modelling. 2019;393:135–151. doi: 10.1016/j.ecolmodel.2018.12.010

8. Gardner RH, Milne BT, Turnei MG, O’Neill RV. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology. 1987;1(1):19–28. doi: 10.1007/BF02275262

9. With KA. The Application of Neutral Landscape Models in Conservation Biology. Aplicacion de Modelos de Paisaje Neutros en la Biologia de la Conservacion. Conservation Biology. 1997;11(5):1069–1080. doi: 10.1046/j.1523-1739.1997.96210.x

10. Schröder B, Seppelt R. Analysis of pattern–process interactions based on landscape models—Overview, general concepts, and methodological issues. Ecological Modelling. 2006;199(4):505–516. doi: 10.1016/j.ecolmodel.2006.05.036

11. Laurance WF, Goosem M, Laurance SGW. Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution. 2009;24(12):659–669. doi: 10.1016/j.tree.2009.06.009

12. Ibisch PL, Hoffmann MT, Kreft S, Pe’er G, Kati V, Biber-Freudenberger L, et al. A global map of roadless areas and their conservation status. Science (New York, NY). 2016;354(6318):1423–1427. doi: 10.1126/science.aaf7166

13. Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution. 2014;29(2):107–116. doi: 10.1016/j.tree.2013.12.001

14. Gaucherel C, Giboire N, Viaud V, Houet T, Baudry J, Burel F. A domain-specific language for patchy landscape modelling: The Brittany agricultural mosaic as a case study. Ecological Modelling. 2006;194(1-3):233–243. doi: 10.1016/j.ecolmodel.2005.10.026

15. Pe’er G, Zurita GA, Schober L, Bellocq MI, Strer M, Müller M, et al. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model. PLOS ONE. 2013;8(5):e64968. doi: 10.1371/journal.pone.0064968 23724108

16. Dislich C, Hettig E, Salecker J, Heinonen J, Lay J, Meyer KM, et al. Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs. PLOS ONE. 2018;13(1):e0190506. doi: 10.1371/journal.pone.0190506

17. Gatto M, Wollni M, Qaim M. Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land Use Policy. 2015;46:292–303. doi: 10.1016/j.landusepol.2015.03.001

18. Kirby KR, Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Bergen S, et al. The future of deforestation in the Brazilian Amazon. Futures. 2006;38(4):432–453. doi: 10.1016/j.futures.2005.07.011

19. Soares-Filho BS, Assunção RM, Pantuzzo AE. Modeling the Spatial Transition Probabilities of Landscape Dynamics in an Amazonian Colonization FrontierTransition probability maps indicate where changes may occur in the landscape, thus enabling better evaluation of the ecological consequences of lands. BioScience. 2001;51(12):1059–1067. doi: 10.1641/0006-3568(2001)051%5B1059:MTSTPO%5D2.0.CO;2

20. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, et al. A standard protocol for describing individual-based and agent-based models. Ecological Modelling. 2006;198:115–126. doi: 10.1016/j.ecolmodel.2006.04.023

21. Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: A review and first update. Ecological Modelling. 2010;221(23):2760–2768. doi: 10.1016/j.ecolmodel.2010.08.019

22. Müller B, Bohn F, Dreßler G, Groeneveld J, Klassert C, Martin R, et al. Describing human decisions in agent-based models—ODD + D, an extension of the ODD protocol. Environmental Modelling & Software. 2013;48:37–48. doi: 10.1016/j.envsoft.2013.06.003

23. Koh LP. Balancing societies’ priorities: An ecologist’s perspective on sustainable development. Basic and Applied Ecology. 2011;12(5):389–393. doi: 10.1016/j.baae.2011.05.004

24. Dislich C, Keyel AC, Salecker J, Kisel Y, Meyer KM, Auliya M, et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews. 2017;92(3):1539–1569. doi: 10.1111/brv.12295 27511961

25. Euler M, Krishna V, Schwarze S, Siregar H, Qaim M. Oil Palm Adoption, Household Welfare, and Nutrition Among Smallholder Farmers in Indonesia. World Development. 2017;93:219–235. doi: 10.1016/j.worlddev.2016.12.019

26. Krishna V, Euler M, Siregar H, Qaim M. Differential livelihood impacts of oil palm expansion in Indonesia. Agricultural Economics. 2017;48(5):639–653. doi: 10.1111/agec.12363

27. McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; 2012. Available from: http://www.umass.edu/landeco/research/fragstats/fragstats.html.

28. VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C. SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises; 2014. Available from: https://cran.r-project.org/package=SDMTools.

29. Sobol IM. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 1990;2(1):112–118.

30. Chan K, Tarantola S, Saltelli A, Sobol IM. Variance-Based Methods. In: Saltelli A, Chan K, Scott E, editors. Sensitivity Analysis. Chichester: Wiley; 2000. p. 167–197.

31. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications. 2010;181(2):259–270. doi: 10.1016/j.cpc.2009.09.018

32. Jansen MJW. Analysis of variance designs for model output. Computer Physics Communications. 1999;117(1-2):35–43. doi: 10.1016/S0010-4655(98)00154-4

33. Melati D. The use of remote sensing data to monitor land use systems and forest variables of the tropical rainforest landscape under transformation in Jambi Province, Sumatra, Indonesia [Dissertation]. Georg-August-Universität Göttingen; 2017.

34. Kumar M, Husian M, Upreti N, Gupta D. Genetic Algorithm: Review and Application. International Journal of Information Technology and Knowledge Management. 2010;2(2):451–454.

35. Willighagen E, Ballings M. genalg: R based Genetic Algorithm; 2015. Available from: https://cran.r-project.org/package=genalg.

36. Euler M, Schwarze S, Siregar H, Qaim M. Oil Palm Expansion among Smallholder Farmers in Sumatra, Indonesia. Journal of Agricultural Economics. 2016;67(3):658–676. doi: 10.1111/1477-9552.12163

37. Klasen S, Meyer KM, Dislich C, Euler M, Faust H, Gatto M, et al. Economic and ecological trade-offs of agricultural specialization at different spatial scales. Ecological Economics. 2016;122:111–120. doi: 10.1016/j.ecolecon.2016.01.001

38. McKay MD, Beckman RJ, Conover WJ. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics. 1979;21(2):239. doi: 10.1080/00401706.1979.10489755

39. R Core Team. R: A Language and Environment for Statistical Computing; 2018. Available from: https://www.r-project.org/.

40. Salecker J, Sciaini M, Meyer KM, Wiegand, K. The nlrx R package: A next–generation framework for reproducible NetLogo model analyses. Methods in Ecology and Evolution. 2019;Accepted Author Manuscript.

41. Berkes F, Folke C, Colding J. Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press; 1998. Available from: https://www.cambridge.org/vi/academic/subjects/life-sciences/ecology-and-conservation/linking-social-and-ecological-systems-management-practices-and-social-mechanisms-building-resilience?format=PB.

42. Pe’er G, Dicks LV, Visconti P, Arlettaz R, Baldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344(6188):1090–1092. doi: 10.1126/science.1253425 24904142

43. Pe’er G, Lakner S, Passoni G, Azam C, Berger J, Hartmann L, et al. Is the CAP Fit for purpose? An evidence-based, rapid fitness-check assessment. Leipzig: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; 2017.

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Antiseptika a prevence ve stomatologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Citikolin v neuroprotekci a neuroregeneraci: od výzkumu do klinické praxe nejen očních lékařů
Autoři: MUDr. Petr Výborný, CSc., FEBO

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Diagnostika a léčba deprese pro ambulantní praxi
Autoři: MUDr. Jan Hubeňák, Ph.D

Význam nemocničního alert systému v době SARS-CoV-2
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D., prim. MUDr. Václava Adámková

Všechny kurzy
Kurzy Doporučená témata