#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ecophysiological impacts of Esca, a devastating grapevine trunk disease, on Vitis vinifera L.


Autoři: Loris Ouadi aff001;  Emilie Bruez aff001;  Sylvie Bastien aff001;  Jessica Vallance aff001;  Pascal Lecomte aff001;  Jean-Christophe Domec aff002;  Patrice Rey aff001
Působiště autorů: INRA, ISVV, UMR1065 Santé et Agroécologie du Vignoble (SAVE), Villenave d'Ornon, France aff001;  Bordeaux Sciences Agro, INRA UMR1391 Interactions Sol Plante Atmosphère (ISPA), Villenave d'Ornon, France aff002;  Université de Bordeaux, ISVV, UR Œnologie, Villenave d’Ornon, France aff003;  Université de Bordeaux, ISVV, UMR1065 Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, Villenave d'Ornon, France aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222586

Souhrn

Esca is a Grapevine Trunk Disease (GTD) caused by a broad range of taxonomically unrelated fungal pathogens. These attack grapevine wood tissues inducing necroses even in the conductive vascular tissues, thus affecting the vine physiology and potentially leading to plant death. However, the influence of Esca on leaf and whole-plant water transport disruption remains poorly understood. In this paper, a detailed analysis of xylem-related physiological parameters in grapevines that expressed Esca-foliar symptoms was carried out. The experiments were conducted in a vineyard in the Bordeaux region (France) on cv. Cabernet-Sauvignon (Vitis vinifera L.) grapevines, which were monitored for Esca-foliar symptoms over a two-year period. Heat dissipation sap-flow sensors were installed during the summer on grapevines having expressed or not Esca-foliar symptoms. Leaf water potential, stomatal conductance and leaf transpiration were also measured. Physiological monitoring showed that sap flow density and whole-plant transpiration of Esca-infected grapevines decreased significantly a week before the first foliar symptoms appeared. When atmospheric water demand (Vapour Pressure Deficit, VPD) was the highest, both parameters tended to be about twice as low in symptomatic grapevines as in asymptomatic ones. Sap flow density data at the maximum transpiration-time, was systematically 29–30% lower in Esca-infected grapevines compared to control plants before or after the appearance of Esca-foliar symptoms. This trend was observed whatever the temperatures and VPD values measured. In Esca-diseased plants, larger amounts of necrotic wood, mainly white rot, were found in the trunk and cordon of symptomatic grapevines compared to healthy ones, suggesting necroses have an influence in reducing the whole-plant hydraulic capacity. This study reveals that the use of physiological monitoring methods, together with the visual monitoring of foliar symptoms, could prove useful in providing accurate measurements of Esca disease severity.

Klíčová slova:

Biology and life sciences – Organisms – Eukaryota – Plants – Flowering plants – Grapevine – Plant science – Plant anatomy – Leaves – Stomata – Wood – Stem anatomy – Plant physiology – Physiology – Sensory physiology – Physiological parameters – Medicine and health sciences – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Necrosis


Zdroje

1. Hofstetter V, Buyck B, Croll D, Viret O, Couloux A, Gindro K. What if esca disease of grapevine were not a fungal disease? Fungal Diversity. 2012; 1(54): 51–67.

2. Grosman J, Doublet B. Maladies du bois de la vigne: synthèse des dispositifs d’observation au vignoble, de l’observatoire 2003–2008 au réseau d’épidémiosurveillance actuel. Phytoma. 2012; 651(2): 31–34.

3. Bruez E. Etude comparative des communautés fongiques et bactériennes colonisant le bois de ceps de vigne ayant exprimé ou non des symptômes d’esca. Thesis, University of Bordeaux. 2013. Available from: http://www.theses.fr/2013BOR22027

4. Gerbore J, Vallance J, Yacoub A, Delmotte F, Grizard D, Regnault-Roger C, Rey P. Characterization of Pythium oligandrum populations that colonise rhizosphere of vines from the Bordeaux region. FEMS Microbiology Ecology. 2014; 90(1): 153–167. doi: 10.1111/1574-6941.12380 25041717

5. Pierron R. Esca et vigne: compréhension des mécanismes de défense précoces du bois de la vigne Vitis vinifera L. suite à la maladie, colonisation des champignons in planta et proposition de moyens de lutte pour une viticulture durable. Thesis, University of Toulouse. 2015. Available from: http://www.theses.fr/2015INPT0027

6. Lecomte P, Darrieutort G, Liminana J-M, Comont G, Muruamendiaraz A, Legorburu F-J et al. New insights into Esca of grapevine: the development of foliar symptoms and their association with xylem discoloration. Plant Disease. 2012; 96(7): 924–934. doi: 10.1094/PDIS-09-11-0776-RE 30727208

7. Bertsch C, Ramírez‐Suero M, Magnin‐Robert M, Larignon P, Chong J, Abou‐Mansour E, et al. Grapevine trunk diseases: complex and still poorly understood. Plant Pathology. 2013; 62(2): 243–265.

8. Surico G, Mugnai L, Marchi G. Older and more recent observations on esca: a critical overview. Phytopathologia Mediterranea. 2006; 45(1): 1000–1019.

9. Wagschal I, Abou-Mansour E, Petit A, Clément C, Fontaine F. Wood diseases of grapevine: A review on eutypa dieback and esca. In: Ait Barka E, Clément C, editors. Plant-Microbe Interactions. Kerala, India; 2008. pp. 367–391.

10. Larignon P, Fontaine F, Farine S, Clément C, Bertsch C. Esca et Black Dead Arm: deux acteurs majeurs des maladies du bois chez la Vigne. Comptes Rendus de l'Académie des Sciences. 2009; 332(9): 765–783.

11. Bellée A, Comont G, Nivault A, Abou-Mansour E, Coppin C, Dufour MC, et al. Life traits of four Botryosphaeriaceae species and molecular responses of different grapevine cultivars or hybrids. Plant Pathology. 2017; 66(5): 763–776.

12. Harmandon F. Effets toxiques de l'arsénite de sodium sur la santé humaine et exposition des utilisateurs. Rencontre Techniques: Les maladies du bois en Midi-Pyrénées. 2004; 8–12.

13. Larignon P, Fontaine F, Bertsch C. Les maladies du bois de la vigne: L’arsénite de sodium de nouveau à l’étude. Le Vigneron Champenois. 2014; 135(10): 27–29.

14. Mondello V, Larignon P, Armengol J, Kortekamp A, Vaczy K, Prezman F, et al. Management of grapevine trunk diseases: knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathologia Mediterranea. 2019; 57(3): 369–383.

15. Fischer M, Kassemeyer HH. Fungi associated with esca disease of grapevine in Germany. Vitis. 2003; 42(3): 109–116.

16. Viret O, Bloesch B, Fabre AL, Taillens J, Siegfried W. L'esca en Suisse: situation en 2001 et évolution en 2004. Rencontre Techniques: Les maladies du bois en Midi-Pyrénées. 2012; 46–49.

17. Fussler L, Kobes N, Bertrand F, Maumy M, Grosman J, Savary S. A characterization of grapevine trunk diseases in France from data generated by the National Grapevine Wood Diseases Survey. Phytopathology. 2008; 98(5): 571–579. doi: 10.1094/PHYTO-98-5-0571 18943225

18. Crous PW, Gams W, Wingfield MJ, van Wyk PS. Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia. 1996; 88(5): 786–796.

19. Larignon P, Dubos B. Fungi associated with esca disease in grapevine. European Journal of Plant Pathology. 1997; 103(2): 147–157.

20. Fischer M. Biodiversity and geographic distribution of basidiomycetes causing esca-associated white rot in grapevine: a worldwide perspective. Phytopathologia Mediterranea. 2006; 45(4): 30–42.

21. Mostert F. Halleen P. Fourie P. W. Crous. A review of Phaeoacremonium species involved in Petri disease and asca of grapevines. Phytopathologia Mediterranea. 2006; 45(1): 1000–1018.

22. Pouzoulet J, Mailhac N, Couderc C, Besson X, Daydé J, Lummerzheim M, et al. A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples. Applied Microbiology Biotechnology. 2013; 97(23): 10163–10175. doi: 10.1007/s00253-013-5299-6 24136470

23. Lecomte P, Diarra B, Carbonneau A, Rey P, Chevrier C. Esca of grapevine and training practices in France: results of a 10-year survey. Phtytopathologia Mediterranea. 2018; 57(3): 472–487.

24. Travadon R, Lecomte P, Diarra B, Lawrence DP, Renault D, Ojeda H, et al. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi. Fungal Ecology. 2016; 24(Part A): 82–93.

25. Lecomte P, Darrieutort G, Liminana J, Louvet G, Tandonnet J, Guérin-Dubrana L, et al. Esca de la vigne. II. Vers une gestion raisonnée des maladies de dépérissement. Phytoma. 2008; (616): 37–41.

26. Maher N, Piot J, Bastien S, Vallance J, Rey P, Guérin-Dubrana L. Wood necrosis in esca-affected vines: types, relationships and possible links with foliar symptom expression. OENO One. 2012; 46(1): 15–27.

27. Lima MRM, Machado AF, Gubler WD. Metabolomic study of chardonnay grapevines double stressed with esca-associated fungi and drought. Phytopathology. 2017; 107(6): 669–680. doi: 10.1094/PHYTO-11-16-0410-R 28402211

28. Carbonneau A, Deloire A, Torregrosa L, Jaillard B, Pellegrino A, Métay A, et al. The grapevine: physiology, terroir, growing. 2nd edition. Dunod; 2015.

29. Domec JC, Rivera LN, King JS, Peszlen I, Hain F, Smith B, et al. Hemlock woolly adelgid (Adelges tsugae) infestation affects water and carbon relations of eastern hemlock (Tsuga canadensis) and Carolina hemlock (Tsuga caroliniana). New Phytologist. 2013; 199(2): 452–463. doi: 10.1111/nph.12263 23560452

30. Scheidegger Y, Saurer M, Bahn M, Siegwolf R. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia. 2000; 125(3): 350–357. doi: 10.1007/s004420000466 28547329

31. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics. 2002; 33(1): 507–559.

32. Leeuwen C, Gaudillère JP, Trégoat O. The assessment of vine water uptake conditions by 13c/12c discrimination in grape sugar. OENO One. 2001; 35(4): 195–205.

33. Farquhar GD O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology. 1982; 9(2): 121–137.

34. Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology. 1988; 88(4): 1418–1424. doi: 10.1104/pp.88.4.1418 16666476

35. Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology. 1989; 40(1): 503–537.

36. Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature. 1993; 363(6428): 439–443.

37. Gaudillère JP, van Leeuwen C, Ollat N. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. Journal of Experimental Botany. 2002; 53(369): 757–763. doi: 10.1093/jexbot/53.369.757 11886896

38. Barbour MM, Walcroft AS, Farquhar GD. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology. 2007; 34(2): 83–94.

39. Kahmen A, Sachse D, Arndt SK, Tu KP, Farrington H, Vitousek PM, et al. Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants. Proceedings of the National Academy of Sciences. 2011; 108(5): 1981–1986.

40. Meier U. BBCH-monograph: growth stages of mono-and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry. 2001; 130–133.

41. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. Sap Pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science. 1965; 148(3668): 339–346. doi: 10.1126/science.148.3668.339 17832103

42. Meinzer FC, Johnson DM., Lachenbruch B, McCulloh KA, Woodruff DR. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology. 2009; 23(5): 922–930.

43. Loustau D, Domec JC, Bosc A. Interpreting the variations in xylem sap flux density within the trunk of maritime pine (Pinus pinaster Ait.): application of a model for calculating water flows at tree and stand levels. Annals of Forest Science. 1998; 55: 29–46.

44. Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Sciences. 2006; 63(6): 625–644.

45. Domec JC, Schäfer K, Oren R, Kim HS, McCarthy HR. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiology. 2010; 30(8): 1001–1015. doi: 10.1093/treephys/tpq054 20566583

46. Granier A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annales des Sciences Forestières. 1985; 42(2): 193–200.

47. Goulden ML, Field CB. Three methods for monitoring the gas exchange of individual tree canopies: ventilated-chamber, sap-flow and Penman-Monteith measurements on evergreen oaks. Functional Ecology. 1994; 8(1): 125–135.

48. Pangle RE, Limousin JM, Plaut JA, Yepez EA, Hudson PJ, Boutz AL, et al. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland. Ecology and Evolution. 2015; 5(8): 1618–1638. doi: 10.1002/ece3.1422 25937906

49. Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology. 1987; 3(4): 309–320. doi: 10.1093/treephys/3.4.309 14975915

50. Ward EJ, Domec JC, King J, Sun G, McNulty S, Noormets A. TRACC: an open source software for processing sap flux data from thermal dissipation probes. Trees. 2017; 31(5): 1737–1742.

51. Domec JC, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant, Cell & Environment. 2009; 32(11): 1500–1512.

52. Liminana JM, Pacreau G, Boureau F, Menard E, David S, Himonnet C, et al. Inner necrosis in grapevine rootstock mother plants in the Cognac area (Charentes, France). Phytopathologia Mediterranea. 2009; 48(1): 92–100.

53. Smith BN, Epstein S. Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiology. 1970; 46(5): 738–742. doi: 10.1104/pp.46.5.738 16657539

54. R Core Team. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. 2016. Available from: https://www.r-project.org/

55. Cabibel B, Do F, Horoyan J. Mesures thermiques des flux de sève dans les troncs et les racines et fonctionnement hydrique des arbres. I. Analyse théorique des erreurs sur la mesure des flux et validation des mesures en présence de gradients thermiques extérieurs. Agronomie. 1991; 11(8): 669–678.

56. McElrone AJ, Grant JA, Kluepfel DA. The role of tyloses in crown hydraulic failure of mature walnut trees afflicted by apoplexy disorder. Tree Physiology. 2010; 30(6): 761–772. doi: 10.1093/treephys/tpq026 20447983

57. Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Frontiers in Plant Science. 2014; 5(253): 1–11.

58. Petit AN, Vaillant N, Boulay M, Clement C, Fontaine F. Alteration of photosynthesis in grapevines affected by esca. Phytopathology. 2006; 96(10): 1060–1066. doi: 10.1094/PHYTO-96-1060 18943493

59. Pataki DE, Oren R, Phillips N. Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. Journal of Experimental Botany. 1998; 49(322): 871–878.

60. Edwards J, Pascoe IG, Salib S. Impairment of grapevine xylem function by Phaeomoniella chlamydospora infection is due to more than physical blockage of vessels with “goo”. Phytopathologia Mediterranea. 2007; 46(1): 1000–1004.

61. Ritchie GA, Hinckley TM. The pressure chamber as an instrument for ecological research. Advances in Ecological Research. 1975; 9: 165–254.

62. Barataud F, Moyne C, Bréda N, Granier A. Soil water dynamics in an oak stand. Plant and Soil. 1995; 172(1): 29–43.

63. Sack L, Holbrook NM. Leaf hydraulics. Annual Review of Plant Biology. 2006; 57(1): 361–381.

64. Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, et al. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology. 2016; 36(8): 983–993. doi: 10.1093/treephys/tpw031 27146334

65. Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology. 2003; 132(4): 2166–2173. doi: 10.1104/pp.103.023879 12913171

66. Zhang JW, Feng Z, Cregg BM, Schumann CM. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiology. 1997; 17(7): 461–466. doi: 10.1093/treephys/17.7.461 14759838

67. Barbour MM, Walcroft AS, Farquhar GD. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell & Environment. 2002; 25(11): 1483–1499.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#