DKK1 promotes hepatocellular carcinoma inflammation, migration and invasion: Implication of TGF-β1

Autoři: Maha Fezza aff001;  Mayssam Moussa aff001;  Rita Aoun aff001;  Rita Haber aff001;  George Hilal aff001
Působiště autorů: Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223252


Dickkopf-1 (DKK1), an inhibitor of the most frequently impaired signaling pathway in hepatocellular carcinoma (HCC), the Wnt/beta-catenin pathway, seems to fulfill contradictory functions in the process of tumorigenesis, acting either as an oncogenic promoter of metastasis or as a tumor suppressor. Elevated serum levels of DKK1 have been reported in HCC; however, little is known about its functional significance. In the current study, we treated HepG2/C3A and PLC/PRF/5 with the recombinant protein DKK1. Cytotoxicity was first determined by the WST-8 assay. AFP expression was measured at both the mRNA and protein levels. Expression of the oncogenes MYC, CCND1, hTERT, and MDM2 and the tumor suppressor genes TP53, P21 and RB was assessed. Western blot analysis of non-phosphorylated ẞ-catenin and Sanger sequencing were performed to explain the functional differences between the two cell lines. Subsequently, inflammation, migration and invasion were evaluated by qPCR, ELISA, the Boyden chamber assay, zymography, and MMP-2 and MMP-9 western blot analysis. Knockdown of DKK1 and TGF-β1 were also performed. Our results suggest that DKK1 exerts an oncogenic effect on HepG2/C3A cell line by upregulating the expression of oncogenes and downregulating that of tumor suppressor genes, whereas the opposite effect was demonstrated in PLC/PRF/5 cells. This differential impact of DKK1 can be explained by the mutations that affect the canonical Wnt pathway that were detected in exon 3 of the CTNNB1 gene in the HepG2 cell line. We further confirmed that DKK1 promotes inflammation, tumor invasion and migration in both cell types. The canonical pathway was not responsible for the DKK1 proinvasive effect, as indicated by the active ẞ-catenin levels in the two cell lines upon DKK1 treatment. Interestingly, knockdown of TGF-β1 negatively affected the DKK1 proinvasive effect. Taken together, DKK1 appears to facilitate tumor invasion and migration through TGF- β1 by remodeling the tumor microenvironment and inducing inflammation. This finding endorses the relevance of TGF-β1 as a therapeutic target.

Klíčová slova:

Cancer treatment – Carcinogenesis – Gene expression – Hepatocellular carcinoma – Inflammation – Metastasis – Secretion – TGF-beta signaling cascade


1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians [Internet]. 2018 Sep 12 [cited 2018 Oct 26];0(0). Available from:

2. Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond, B, Biol Sci. 2017 19;372(1732).

3. Khalaf N, Ying J, Mittal S, Temple S, Kanwal F, Davila J, et al. Natural History of Untreated Hepatocellular Carcinoma in a US Cohort and the Role of Cancer Surveillance. Clin Gastroenterol Hepatol. 2017;15(2):273–281.e1. doi: 10.1016/j.cgh.2016.07.033 27521507

4. Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol. 2013 Nov;59(5):1107–17. doi: 10.1016/j.jhep.2013.07.001 23835194

5. Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015 Jul 28;7(15):1964–70. doi: 10.4254/wjh.v7.i15.1964 26244070

6. Goossens N, Sun X, Hoshida Y. Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol. 2015 Oct;2(4):371–9. doi: 10.2217/hep.15.26 26617981

7. Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer. 2015 Nov;15(11):653–67. doi: 10.1038/nrc4017 26493646

8. Zucman-Rossi J, Villanueva A, Nault J-C, Llovet JM. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology. 2015 Oct;149(5):1226–1239.e4. doi: 10.1053/j.gastro.2015.05.061 26099527

9. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015 May;47(5):505–11. doi: 10.1038/ng.3252 25822088

10. Moreno-Bueno G, Hardisson D, Sánchez C, Sarrió D, Cassia R, García-Rostán G, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene. 2002 Nov 14;21(52):7981–90. doi: 10.1038/sj.onc.1205924 12439748

11. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene. 2006 Jun 26;25(27):3778–86. doi: 10.1038/sj.onc.1209547 16799619

12. Waisberg J, Saba GT. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J Hepatol. 2015 Nov 18;7(26):2631–5. doi: 10.4254/wjh.v7.i26.2631 26609340

13. Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol. 2017 Apr;52(4):419–31. doi: 10.1007/s00535-016-1299-5 28035485

14. Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, et al. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 2018;5:61–73. doi: 10.2147/JHC.S156701 29984212

15. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006 Dec 4;25(57):7469–81. doi: 10.1038/sj.onc.1210054 17143291

16. Shen Q, Fan J, Yang X-R, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012 Aug;13(8):817–26. doi: 10.1016/S1470-2045(12)70233-4 22738799

17. Menezes ME, Devine DJ, Shevde LA, Samant RS. Dickkopf1: a tumor suppressor or metastasis promoter? Int J Cancer. 2012 Apr 1;130(7):1477–83. doi: 10.1002/ijc.26449 21953410

18. Qi L, Sun B, Liu Z, Li H, Gao J, Leng X. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci. 2012 Apr;103(4):828–35. doi: 10.1111/j.1349-7006.2012.02222.x 22321022

19. González-Sancho JM, Aguilera O, García JM, Pendás-Franco N, Peña C, Cal S, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene. 2005 Feb 3;24(6):1098–103. doi: 10.1038/sj.onc.1208303 15592505

20. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011 Apr 15;128(8):1793–803. doi: 10.1002/ijc.25507 20549706

21. Zhang J, Zhang X, Zhao X, Jiang M, Gu M, Wang Z, et al. DKK1 promotes migration and invasion of non-small cell lung cancer via β-catenin signaling pathway. Tumour Biol. 2017 Jul;39(7):1010428317703820. doi: 10.1177/1010428317703820 28677426

22. Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017 Oct;19(10):1274–85. doi: 10.1038/ncb3613 28892080

23. Chen W, Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. npj Precision Oncology. 2018 Feb 16;2(1):4. doi: 10.1038/s41698-018-0047-0 29872722

24. Wirths O, Waha A, Weggen S, Schirmacher P, Kühne T, Goodyer CG, et al. Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms’ tumors. Lab Invest. 2003 Mar;83(3):429–34. 12649343

25. Tsai J-F, Jeng J-E, Chuang W-L. Dickkopf-1 and hepatocellular carcinoma. Lancet Oncol. 2012 Oct;13(10):e410; author reply e410-411. doi: 10.1016/S1470-2045(12)70416-3 23026825

26. Tao Y-M, Liu Z, Liu H-L. Dickkopf-1 (DKK1) promotes invasion and metastasis of hepatocellular carcinoma. Dig Liver Dis. 2013 Mar;45(3):251–7. doi: 10.1016/j.dld.2012.10.020 23266194

27. Qin X, Zhang H, Zhou X, Wang C, Zhang H, Zhang X, et al. Proliferation and migration mediated by Dkk-1/Wnt/beta-catenin cascade in a model of hepatocellular carcinoma cells. Transl Res. 2007 Nov;150(5):281–94. doi: 10.1016/j.trsl.2007.06.005 17964517

28. Wang S, Zhu M, Wang Q, Hou Y, Li L, Weng H, et al. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/mTOR signalling. Cell Death Dis. 2018 Oct 9;9(10):1–13.

29. Fransvea E, Angelotti U, Antonaci S, Giannelli G. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology. 2008 May;47(5):1557–66. doi: 10.1002/hep.22201 18318443

30. Lin SW, Lee MT, Ke FC, Lee PP, Huang CJ, Ip MM, et al. TGFbeta1 stimulates the secretion of matrix metalloproteinase 2 (MMP2) and the invasive behavior in human ovarian cancer cells, which is suppressed by MMP inhibitor BB3103. Clin Exp Metastasis. 2000;18(6):493–9. 11592306

31. Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer. 2015 Nov;15(11):653–67. doi: 10.1038/nrc4017 26493646

32. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene. 2002 Apr 11;21(16):2593–604. doi: 10.1038/sj.onc.1205434 11971194

33. Fako V, Yu Z, Henrich CJ, Ransom T, Budhu AS, Wang XW. Inhibition of wnt/β-catenin Signaling in Hepatocellular Carcinoma by an Antipsychotic Drug Pimozide. Int J Biol Sci. 2016;12(7):768–75. doi: 10.7150/ijbs.14718 27313491

34. Licchesi JDF, Van Neste L, Tiwari VK, Cope L, Lin X, Baylin SB, et al. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc. Oncogene. 2010 Nov 4;29(44):5923–34. doi: 10.1038/onc.2010.322 20697356

35. Cowling VH, D’Cruz CM, Chodosh LA, Cole MD. c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol. 2007 Jul;27(14):5135–46. doi: 10.1128/MCB.02282-06 17485441

36. Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res. 1999 Jan 15;59(2):269–73. 9927029

37. Mikheev AM, Mikheeva SA, Liu B, Cohen P, Zarbl H. A functional genomics approach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis. 2004 Jan;25(1):47–59. doi: 10.1093/carcin/bgg190 14555616

38. Lee KC, Crowe AJ, Barton MC. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol. 1999 Feb;19(2):1279–88. doi: 10.1128/mcb.19.2.1279 9891062

39. Lazarevich NL. Molecular mechanisms of alpha-fetoprotein gene expression. Biochemistry Mosc. 2000 Jan;65(1):117–33. 10702646

40. Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget. 2017 Nov 24;9(4):5492–508. doi: 10.18632/oncotarget.23695 29435196

41. Kwack MH, Hwang SY, Jang IS, Im SU, Kim JO, Kim MK, et al. Analysis of cellular changes resulting from forced expression of Dickkopf-1 in hepatocellular carcinoma cells. Cancer Res Treat. 2007 Mar;39(1):30–6. doi: 10.4143/crt.2007.39.1.30 19746230

42. Pang H, Ma N, Shen W, Zhao Q, Wang J, Duan L, et al. Effects of DKK1 overexpression on bone metastasis of SBC-3 cells. Oncol Lett. 2018 May;15(5):6739–44. doi: 10.3892/ol.2018.8160 29731859

43. Anson M, Crain-Denoyelle A-M, Baud V, Chereau F, Gougelet A, Terris B, et al. Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Invest. 2012 Feb;122(2):586–99. doi: 10.1172/JCI43937 22251704

44. Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006 Nov 10;4:48. doi: 10.1186/1479-5876-4-48 17096856

45. Papageorgis P. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. J Oncol. 2015;2015:587193. doi: 10.1155/2015/587193 25883652

46. Huang J, Qiu M, Wan L, Wang G, Huang T, Chen Z, et al. TGF-β1 Promotes Hepatocellular Carcinoma Invasion and Metastasis via ERK Pathway-Mediated FGFR4 Expression. Cellular Physiology and Biochemistry. 2018;45(4):1690–9. doi: 10.1159/000487737 29490293

47. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):201–12. doi: 10.1007/s10911-010-9177-x 20440544

48. Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal. 2014;2014:521754. doi: 10.1155/2014/521754 24578639

49. Kim E-S, Kim M-S, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004 Nov;25(5):1375–82. 15492828

Článek vyšel v časopise


2019 Číslo 9