#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Development of highly sensitive and low-cost DNA agarose gel electrophoresis detection systems, and evaluation of non-mutagenic and loading dye-type DNA-staining reagents


Autoři: Ken Motohashi aff001
Působiště autorů: Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, Japan aff001;  Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto, Japan aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222209

Souhrn

Highly sensitive and low-cost DNA agarose gel detection systems were developed using non-mutagenic and loading dye-type DNA-staining reagents. The DNA detection system that used Midori Green Direct and Safelook Load-Green, both with an optimum excitation wavelength at ~490 nm, could detect DNA-fragments at the same sensitivity to that of the UV (312 nm)-transilluminator system combined with ethidium bromide, after it was excited by a combination of cyan LED light and a shortpass filter (510 nm). The cyan LED system can be also applied to SYBR Safe that is widely used as a non-toxic dye for post-DNA-staining. Another DNA-detection system excited by black light was also developed. Black light used in this system had a peak emission at 360 nm and caused less damage to DNA due to lower energy of UV rays with longer wavelength when compared to those of short UV rays. Moreover, hardware costs of the black light system were ~$100, less than 1/10 of the commercially available UV (365 nm) transilluminator (>$1,000). EZ-Vision and Safelook Load-White can be used as non-mutagenic and loading dye-type DNA-staining reagents in this system. The black light system had a greater detection sensitivity for DNA fragments stained by EZ-Vision and Safelook Load-White compared with the commercially available imaging system using UV (365 nm) transilluminator.

Klíčová slova:

Biology and life sciences – Molecular biology – Molecular biology techniques – Molecular biology assays and analysis techniques – DNA filter assay – Genetics – DNA – DNA electrophoresis – Biochemistry – Nucleic acids – Research and analysis methods – Electrophoretic techniques – Gel electrophoresis – Agarose gel electrophoresis – Physical sciences – Physics – Electromagnetic radiation – Light – Artificial light – Ultraviolet radiation – Chemistry – Chemical compounds – Bromides


Zdroje

1. Voytas D. Agarose gel electrophoresis. Curr Protoc Mol Biol. 2001;Chapter 2:Unit2 5A. doi: 10.1002/0471142727.mb0205as51 18265185.

2. Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012;(62). doi: 10.3791/3923 PubMed Central PMCID: PMC4846332. 22546956

3. Green MR, Sambrook J. Analysis of DNA by Agarose Gel Electrophoresis. Cold Spring Harb Protoc. 2019;2019(1):pdb top100388. doi: 10.1101/pdb.top100388 30602561.

4. Aaij C, Borst P. The gel electrophoresis of DNA. Biochim Biophys Acta. 1972;269(2):192–200. doi: 10.1016/0005-2787(72)90426-1 5063906.

5. Sharp PA, Sugden B, Sambrook J. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose—ethidium bromide electrophoresis. Biochemistry. 1973;12(16):3055–63. doi: 10.1021/bi00740a018 4354250.

6. Borst P. Ethidium DNA agarose gel electrophoresis: how it started. IUBMB Life. 2005;57(11):745–7. doi: 10.1080/15216540500380855 16511967.

7. Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press; 2012.

8. Motohashi K, Shibata S, Ozaki Y, Yatomi Y, Igarashi Y. Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. FEBS Lett. 2000;468(2–3):189–93. Epub 2000/02/29. S0014-5793(00)01222-9 [pii]. doi: 10.1016/s0014-5793(00)01222-9 10692584.

9. Wakita M, Masuda S, Motohashi K, Hisabori T, Ohta H, Takamiya K. The significance of type II and PrxQ peroxiredoxins for antioxidative stress response in the purple bacterium Rhodobacter sphaeroides. J Biol Chem. 2007;282(38):27792–801. doi: 10.1074/jbc.M702855200 17644813.

10. Hishiya S, Hatakeyama W, Mizota Y, Hosoya-Matsuda N, Motohashi K, Ikeuchi M, et al. Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol. 2008;49(1):11–8. doi: 10.1093/pcp/pcm158 18003670.

11. Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T, Masuda T. Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem Photobiol Sci. 2008;7(10):1188–95. doi: 10.1039/b802604c 18846282.

12. Lunn G, Sansone EB. Ethidium bromide: destruction and decontamination of solutions. Anal Biochem. 1987;162(2):453–8. doi: 10.1016/0003-2697(87)90419-2 3605608.

13. Ohta T, Tokishita S, Yamagata H. Ethidium bromide and SYBR Green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutat Res. 2001;492(1–2):91–7. doi: 10.1016/s1383-5718(01)00155-3 11377248.

14. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010;2010:592980. doi: 10.4061/2010/592980 21209706; PubMed Central PMCID: PMC3010660.

15. Singer VL, Lawlor TE, Yue S. Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res. 1999;439(1):37–47. doi: 10.1016/s1383-5718(98)00172-7 10029672.

16. Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, et al. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal Biochem. 1999;268(2):278–88. doi: 10.1006/abio.1998.3067 10075818.

17. Williams LR. Staining nucleic acids and proteins in electrophoresis gels. Biotech Histochem. 2001;76(3):127–32. 11475315.

18. Huang Q, Fu WL. Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis. Clin Chem Lab Med. 2005;43(8):841–2. doi: 10.1515/CCLM.2005.141 16201894.

19. Kirsanov KI, Lesovaya EA, Yakubovskaya MG, Belitsky GA. SYBR Gold and SYBR Green II are not mutagenic in the Ames test. Mutat Res. 2010;699(1–2):1–4. doi: 10.1016/j.mrgentox.2010.04.014 20403457.

20. Haines AM, Tobe SS, Kobus HJ, Linacre A. Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis. 2015;36(6):941–4. doi: 10.1002/elps.201400496 25546455.

21. Okegawa Y, Motohashi K. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J. 2015;84(5):900–13. Epub 2015/10/16. doi: 10.1111/tpj.13049 26468055.

22. Motohashi K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol. 2015;15(1):47. doi: 10.1186/s12896-015-0162-8 10.1186/s12896-015-0162-8 [pii]. 26037246.

23. Okegawa Y, Motohashi K. A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem Biophys Rep. 2015;4:148–51. doi: 10.1016/j.bbrep.2015.09.005 29124198

24. Motohashi K. Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochem Biophys Rep. 2017;9:310–5. doi: 10.1016/j.bbrep.2017.01.010 28956018

25. Okegawa Y, Motohashi K. Evaluation of seamless ligation cloning extract preparation methods from an Escherichia coli laboratory strain. Anal Biochem. 2015;486:51–3. Epub 2015/07/03. S0003-2697(15)00324-3 [pii] doi: 10.1016/j.ab.2015.06.031 26133399.

26. Motohashi K. A novel series of high-efficiency vectors for TA cloning and blunt-end cloning of PCR products. Sci Rep. 2019;9(1):6417. doi: 10.1038/s41598-019-42868-6 31015513; PubMed Central PMCID: PMC6478821.

27. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. doi: 10.1038/nmeth.2089 22930834; PubMed Central PMCID: PMC5554542.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#