CT-perfusion in peripheral arterial disease – Correlation with angiographic and hemodynamic parameters

Autoři: Bert-Ram Sah aff001;  Patrick Veit-Haibach aff003;  Klaus Strobel aff007;  Martin Banyai aff008;  Martin W. Huellner aff003
Působiště autorů: Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland aff001;  Department of Cancer Imaging, King’s College London, London, England, United Kingdom aff002;  Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland aff003;  Department of Radiology, University Hospital Zurich, Zurich, Switzerland aff004;  University of Zurich, Zurich, Switzerland aff005;  Joint Department of Medical Imaging, University of Toronto, Toronto, Canada aff006;  Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland aff007;  Department of Internal Medicine, Subdivision of Angiology, Lucerne Cantonal Hospital, Lucerne, Switzerland aff008;  Clinic for Angiology, University Hospital Zurich, Zurich, Switzerland aff009
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223066



The purpose of this study was the assessment of volumetric CT-perfusion (CTP) of the lower leg musculature in patients with symptomatic peripheral arterial disease (PAD) of the lower extremities, comparing it with established angiographic and hemodynamic parameters.

Materials and methods

Thirty-five consecutive patients with symptomatic PAD of the lower extremities requiring interventional revascularization were assessed prospectively. All patients underwent a CTP scan of the lower leg, and hemodynamic and angiographic assessment. Hemodynamic parameters, specifically ankle-brachial pressure index (ABI), ankle blood pressure (ABP), peak systolic velocity (PSV), and segmental pulse oscillography (SPO) level, were determined. Lesion length and degree of collateralization were assessed by interventional angiography. CTP parameters were calculated with a perfusion software, acting on a no outflow assumption. A sequential two-compartment model was used. Differences in CTP parameters and correlations between CTP, hemodynamic and angiographic parameters were assessed with non-parametric tests.


The cohort consisted of 27 subjects with an occlusion, and eight with a high-grade stenosis. The mean blood flow (BF) was 7.71 ± 2.96 ml/100ml*min-1, mean blood volume (BV) 0.71 ± 0.33 ml/100ml, and mean mean transit time (MTT) 7.22 ± 2.66 s. BF and BV were higher in subjects with longer lesions, and BV was higher in subjects with lower ABI. Significant correlations were found between lesion length and BV (r = 0.65) and BF (r = 0.52). Significant inverse correlations were found between BV and ABI and between BV and ABP (r = -0.56, for both correlations).


In our study, we have shown the feasibility of CTP for the assessment of PAD. In the future, this quantitative method might serve as a non-invasive method, possibly complementing the diagnostic workup of patients with peripheral arterial disease.

Klíčová slova:

Blood flow – Blood pressure – Blood volume – Body limbs – Hemodynamics – Legs – Lesions – Stenosis


1. Hirsch AT, Hartman L, Town RJ, Virnig BA. National health care costs of peripheral arterial disease in the Medicare population. Vasc Med. 2008;13(3):209–15. Epub 2008/08/09. doi: 10.1177/1358863X08089277 18687757.

2. Cornejo Del Rio V, Mostaza J, Lahoz C, Sanchez-Arroyo V, Sabin C, Lopez S, et al. Prevalence of peripheral artery disease (PAD) and factors associated: An epidemiological analysis from the population-based Screening PRE-diabetes and type 2 DIAbetes (SPREDIA-2) study. PLoS One. 2017;12(10):e0186220. doi: 10.1371/journal.pone.0186220 29073236; PubMed Central PMCID: PMC5657631.

3. Abaraogu UO, Ezenwankwo EF, Dall PM, Seenan CA. Living a burdensome and demanding life: A qualitative systematic review of the patients experiences of peripheral arterial disease. PLoS One. 2018;13(11):e0207456. doi: 10.1371/journal.pone.0207456 30440040; PubMed Central PMCID: PMC6237376.

4. Fok PW, Lanzer P. Media sclerosis drives and localizes atherosclerosis in peripheral arteries. PLoS One. 2018;13(10):e0205599. doi: 10.1371/journal.pone.0205599 30365531; PubMed Central PMCID: PMC6203409.

5. Sturrock ND, Perkins AC, Wastie ML, Blackband KR, Moriarty KT. A reproducibility study of technetium-99m macroaggregated albumin foot perfusion imaging in patients with diabetes mellitus. Diabetic medicine: a journal of the British Diabetic Association. 1995;12(5):445–8. Epub 1995/05/01. doi: 10.1111/j.1464-5491.1995.tb00512.x 7648811.

6. Lin WY, Kao CH, Hsu CY, Liao SQ, Wang SJ, Yeh SH. Evaluation of tissue perfusion by the Xe-133 washout method in lower limbs of patients with noninsulin-dependent diabetes mellitus. Clin Nucl Med. 1995;20(5):449–52. Epub 1995/05/01. doi: 10.1097/00003072-199505000-00016 7628152.

7. Dwars BJ, Rauwerda JA, van den Broek TA, den Hollander W, Heidendal GA, van Rij GL. A modified scintigraphic technique for amputation level selection in diabetics. European journal of nuclear medicine. 1989;15(1):38–41. Epub 1989/01/01. doi: 10.1007/bf00253597 2917582.

8. Moriarty KT, Perkins AC, Robinson AM, Wastie ML, Tattersall RB. Investigating the capillary circulation of the foot with 99mTc-macroaggregated albumin: a prospective study in patients with diabetes and foot ulceration. Diabetic medicine: a journal of the British Diabetic Association. 1994;11(1):22–7. Epub 1994/01/01. doi: 10.1111/j.1464-5491.1994.tb00224.x 8181247.

9. Amarteifio E, Krix M, Wormsbecher S, Demirel S, Braun S, Delorme S, et al. Dynamic contrast-enhanced ultrasound for assessment of therapy effects on skeletal muscle microcirculation in peripheral arterial disease: pilot study. Eur J Radiol. 2013;82(4):640–6. Epub 2012/12/26. doi: 10.1016/j.ejrad.2012.11.022 23265181.

10. Jiji RS, Pollak AW, Epstein FH, Antkowiak PF, Meyer CH, Weltman AL, et al. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovascular Magnetic Resonance. 2013;15:14. Epub 2013/01/25. doi: 10.1186/1532-429X-15-14 23343398; PubMed Central PMCID: PMC3562222.

11. Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, et al. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovascular imaging. 2012;5(12):1224–30. Epub 2012/12/15. doi: 10.1016/j.jcmg.2012.03.022 23236972; PubMed Central PMCID: PMC3531823.

12. Barfett J, Velauthapillai N, Jaskolka JD. Perfusion in peripheral musculoskeletal structures from dynamic volumetric computed tomography using an en bloc approach. Journal of computer assisted tomography. 2010;34(4):626–32. Epub 2010/07/27. doi: 10.1097/RCT.0b013e3181d53258 20657235.

13. Barfett J, Velauthapillai N, Kloeters C, Mikulis DJ, Jaskolka JD. An en bloc approach to CT perfusion for the evaluation of limb ischemia. Int J Cardiovasc Imaging. 2012;28(8):2073–83. Epub 2012/01/31. doi: 10.1007/s10554-011-9978-z 22286394.

14. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? Journal of cardiovascular computed tomography. 2009;3(6):403–8. doi: 10.1016/j.jcct.2009.07.003 19717355; PubMed Central PMCID: PMC4752333.

15. Prezzi D, Khan A, Goh V. Perfusion CT imaging of treatment response in oncology. Eur J Radiol. 2015;84(12):2380–5. doi: 10.1016/j.ejrad.2015.03.022 25864440.

16. Mather R. CT Dynamics: The Shift from Morphology to Function. Current Radiology Reports. 2013;1(1):64–75. doi: 10.1007/s40134-012-0004-6

17. Lenga L, Albrecht MH, Othman AE, Martin SS, Leithner D, D'Angelo T, et al. Monoenergetic Dual-energy Computed Tomographic Imaging: Cardiothoracic Applications. Journal of thoracic imaging. 2017;32(3):151–8. doi: 10.1097/RTI.0000000000000259 28198752.

18. Diekmann S, Siebert E, Juran R, Roll M, Deeg W, Bauknecht HC, et al. Dose exposure of patients undergoing comprehensive stroke imaging by multidetector-row CT: comparison of 320-detector row and 64-detector row CT scanners. AJNR American journal of neuroradiology. 2010;31(6):1003–9. doi: 10.3174/ajnr.A1971 20110373.

19. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of the ICRP. 2007;37(2–4):1–332. doi: 10.1016/j.icrp.2007.10.003 18082557.

20. Chu LL, Knebel RJ, Shay AD, Santos J, Badawi RD, Gandara DR, et al. CT perfusion imaging of lung cancer: benefit of motion correction for blood flow estimates. Eur Radiol. 2018;28(12):5069–75. doi: 10.1007/s00330-018-5492-1 29869174.

21. Ng CS, Chandler AG, Wei W, Anderson EF, Herron DH, Charnsangavej C, et al. Reproducibility of perfusion parameters obtained from perfusion CT in lung tumors. AJR Am J Roentgenol. 2011;197(1):113–21. Epub 2011/06/28. doi: 10.2214/AJR.10.5404 21701018.

22. Chandler A, Wei W, Anderson EF, Herron DH, Ye Z, Ng CS. Validation of motion correction techniques for liver CT perfusion studies. Br J Radiol. 2012;85(1016):e514–22. doi: 10.1259/bjr/31999821 22374283; PubMed Central PMCID: PMC3587085.

23. Chandler A, Wei W, Herron DH, Anderson EF, Johnson VE, Ng CS. Semiautomated motion correction of tumors in lung CT-perfusion studies. Acad Radiol. 2011;18(3):286–93. doi: 10.1016/j.acra.2010.10.008 21295733.

24. syngo Volume Perfusion CT Body. Available from: https://www.healthcare.siemens.de/computed-tomography/options-upgrades/clinical-applications/syngo-volume-perfusion-ct-body/features.

25. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654. Epub 2006/03/22. doi: 10.1161/CIRCULATIONAHA.106.174526 16549646.

26. Rooke TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, Findeiss LK, et al. 2011 ACCF/AHA Focused Update of the Guideline for the Management of Patients With Peripheral Artery Disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2011;58(19):2020–45. Epub 2011/10/04. doi: 10.1016/j.jacc.2011.08.023 21963765.

27. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003;76(904):220–31. Epub 2003/04/25. doi: 10.1259/bjr/13564625 12711641.

28. Miles KA. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol. 1991;64(761):409–12. Epub 1991/05/01. doi: 10.1259/0007-1285-64-761-409 2036562.

29. Dawson P. Functional imaging in CT. Eur J Radiol. 2006;60(3):331–40. Epub 2006/09/19. doi: 10.1016/j.ejrad.2006.06.023 16979314.

30. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. Epub 1977/03/01. 843571.

31. Buschmann EE, Li L, Brix M, Zietzer A, Hillmeister P, Busjahn A, et al. A novel computer-aided diagnostic approach for detecting peripheral arterial disease in patients with diabetes. PLoS One. 2018;13(6):e0199374. doi: 10.1371/journal.pone.0199374 29928037; PubMed Central PMCID: PMC6013098 (HealthTwist) and provided statistical support which was paid by the funder Charite University Hospital. PB runs a private research institute which collaborated in the research (IPPMed) and provided scientific expertise which was paid by the funder Charite University Hospital. There are no patents, products in development or marketed products to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

32. Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015;116(9):1561–78. doi: 10.1161/CIRCRESAHA.115.303565 25908729; PubMed Central PMCID: PMC4869986.

33. Kumar VA, Liu Q, Wickremasinghe NC, Shi S, Cornwright TT, Deng Y, et al. Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials. 2016;98:113–9. doi: 10.1016/j.biomaterials.2016.04.032 27182813; PubMed Central PMCID: PMC4905688.

34. Neville RF, Attinger CE, Bulan EJ, Ducic I, Thomassen M, Sidawy AN. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23(3):367–73. doi: 10.1016/j.avsg.2008.08.022 19179041.

35. Alexandrescu V, Hubermont G. Primary infragenicular angioplasty for diabetic neuroischemic foot ulcers following the angiosome distribution: a new paradigm for the vascular interventionist? Diabetes Metab Syndr Obes. 2011;4:327–36. doi: 10.2147/DMSO.S23471 PubMed Central PMCID: PMC3180522. 21969804

36. Alexandrescu V, Vincent G, Azdad K, Hubermont G, Ledent G, Ngongang C, et al. A reliable approach to diabetic neuroischemic foot wounds: below-the-knee angiosome-oriented angioplasty. J Endovasc Ther. 2011;18(3):376–87. doi: 10.1583/10-3260.1 21679080.

37. Ippolito D, Casiraghi AS, Talei Franzesi C, Bonaffini PA, Fior D, Sironi S. Intraobserver and Interobserver Agreement in the Evaluation of Tumor Vascularization With Computed Tomography Perfusion in Cirrhotic Patients With Hepatocellular Carcinoma. Journal of computer assisted tomography. 2016;40(1):152–9. doi: 10.1097/RCT.0000000000000331 26484957.

38. Bretas EAS, Torres US, Torres LR, Bekhor D, Saito Filho CF, Racy DJ, et al. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages. Br J Radiol. 2017;90(1078):20170214. doi: 10.1259/bjr.20170214 28830195; PubMed Central PMCID: PMC5853353.

39. Wang Q, Zhang Z, Shan F, Shi Y, Xing W, Shi L, et al. Intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion in patients with lung cancer: Influences of the size and inner-air density of tumors. Thoracic cancer. 2017;8(5):427–35. doi: 10.1111/1759-7714.12458 28585375; PubMed Central PMCID: PMC5582470.

40. Penuelas I, Aranguren XL, Abizanda G, Marti-Climent JM, Uriz M, Ecay M, et al. (13)N-ammonia PET as a measurement of hindlimb perfusion in a mouse model of peripheral artery occlusive disease. J Nucl Med. 2007;48(7):1216–23. doi: 10.2967/jnumed.106.039180 17574988.

41. Scremin OU, Figoni SF, Norman K, Scremin AM, Kunkel CF, Opava-Rutter D, et al. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography. American journal of physical medicine & rehabilitation. 2010;89(6):473–86. doi: 10.1097/PHM.0b013e3181d89b08 20357647.

Článek vyšel v časopise


2019 Číslo 9