Complexation and conformation of lead ion with poly-γ-glutamic acid in soluble state


Autoři: Lingling Wang aff001;  Yamin Liu aff001;  Xiulin Shu aff001;  Shunying Lu aff001;  Xiaobao Xie aff001;  Qingshan Shi aff001
Působiště autorů: State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0218742

Souhrn

Complexation of microbial polymer in soluble state could impact the solubility, mobility, and bioavailability of heavy metals in the environment. The complexation of a bacterial exopolymer, poly-γ-glutamic acid (γ-PGA), with Pb2+ was studied using the polarographic method and circular dichroism measurement in soluble state. The number of available binding sites was determined based on the Chau’s method and was found to be 0.04, 1.12, 3.56 and 4.51 mmol/(g dry weight of γ-PGA) at pH 3.4, 4.2, 5.0 and 6.2, respectively. Further, the number of binding sites was determined based on the Ruzic’s method and was found to be 3.60 and 4.41 mmol/(g dry weight of γ-PGA) for pH 5.0 and 6.2, respectively. The constant (expressed as log K) values were 5.8 and 6.0 at pH 5.0 and 6.2. Compared to biopolymers secreted by other microorganisms, such as extracellular polymeric substances extraction from activated sludge, γ-PGA was a more efficient Pb2+ carrier from pH 5.0 to 6.2. The secondary structure of γ-PGA varied significantly when Pb2+ added. Ca2+ or Mg2+ replace a portion of the adsorbed Pb2+. However, the portion of Pb2+ involved in changing the γ-PGA conformation was not easily replaced by Ca2+ and Mg2+.

Klíčová slova:

Physical sciences – Chemistry – Chemical elements – Metallic lead – Analytical chemistry – Chemical analysis – Polarographic analysis – Physical chemistry – Chemical bonding – Hydrogen bonding – Ions – Cations – Polymer chemistry – Macromolecules – Polymers – Chemical compounds – Organic compounds – Amides – Organic chemistry – Materials science – Materials – Biology and life sciences – Toxicology – Toxic agents – Toxins – Heavy metals – Biochemistry – Neurochemistry – Neurotransmitters – Glutamate – Neuroscience – Medicine and health sciences – Pathology and laboratory medicine


Zdroje

1. Sajid M, Nazal MK, Ihsanullah, Baig N, Osman AM. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep Purif Technol. 2018;191: 400–23.

2. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotox Environ Safe. 2018;148: 702–12.

3. Ihsanullah, Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol. 2016;157: 141–61.

4. Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res. 2015;20(1): 1–18.

5. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92(3): 407–18. doi: 10.1016/j.jenvman.2010.11.011 21138785

6. Vandenbossche M, Jimenez M, Casetta M, Traisnel M. Remediation of heavy metals by biomolecules: a review. Crit Rev Env Sci Tec. 2015;45(15): 1644–704.

7. O'Connor D, Peng TY, Zhang JL, Tsang DCW, Alessi DS, Shen ZT, et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ. 2018;619: 815–26. doi: 10.1016/j.scitotenv.2017.11.132 29166628

8. Bhatnagar A, Sillanpaa M. Removal of natural organic matter (NOM) and its constituents from water by adsorption—a review. Chemosphere. 2017;166: 497–510. doi: 10.1016/j.chemosphere.2016.09.098 27710885

9. Sillanpaa M, Ncibi MC, Matilainen A, Vepsalainen M. Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. Chemosphere. 2018;190: 54–71. doi: 10.1016/j.chemosphere.2017.09.113 28985537

10. Wang H, Chai ZF, Wang DQ. Interactions between humic acids and actinides: recent advances. Chinese Inorg Chem. 2014;30(1): 37–52.

11. Tourney J, Ngwenya BT. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol. 2014;386: 115–32.

12. Decho AW, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol. 2017;8.

13. Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly-gamma-glutamic acid: production, properties and applications. Microbiol-Sgm. 2015;161: 1–17.

14. Sirisansaneeyakul S, Cao MF, Kongklom N, Chuensangjun C, Shi ZP, Chisti Y. Microbial production of poly-gamma-glutamic acid. World J Microb Biot. 2017;33(9).

15. Bajaj I, Singhal R. Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102(10): 5551–61. doi: 10.1016/j.biortech.2011.02.047 21377358

16. Xu S, Wang Z, Gao Y, Zhang S, Wu K. Adsorption of rare earths(III) using an efficient sodium alginate hydrogel cross-linked with poly-gamma-glutamate. Plos One. 2015;10(5).

17. Sakamoto S, Kawase Y. Adsorption capacities of poly-gamma-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. J Environ Radioactiv. 2016;165: 151–8.

18. Rajan YC, Inbaraj BS, Chen BH. In vitro adsorption of aluminum by an edible biopolymer poly(gamma-glutamic acid). J Agr Food Chem. 2014;62(20): 4803–11.

19. Yao J, Xu H, Wang J, Jiang M, Ouyang P. Removal of Cr(III), Ni(II) and Cu(II) by poly(gamma-glutamic acid) from Bacillus subtilis NX-2. J Biomat Sci-Polym E. 2007;18(2): 193–204.

20. Siao FY, Lu JF, Wang JS, Inbaraj BS, Chen BH. In vitro binding of heavy metals by an edible biopolymer poly(gamma-glutamic acid). J Agr Food Chem. 2009;57(2): 777–784.

21. Wang LL, Chen JT, Wang LF, Wu S, Zhang GZ, Yu HQ, et al. Conformations and molecular interactions of poly-gamma-glutamic acid as a soluble microbial product in aqueous solutions. Sci Rep-UK. 2017;7.

22. d'Abzac P, Bordas F, van Hullebusch E, Lens PNL, Guibaud G. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloid Surface B. 2010;80(2): 161–8.

23. Yin YR, Hu YY, Xiong F. Biosorption properties of Cd(II), Pb(II), and Cu(II) of extracellular polymeric substances (EPS) extracted from Aspergillus fumigatus and determined by polarographic method. Environ Monit Assess. 2013;185(8): 6713–8. doi: 10.1007/s10661-013-3059-9 23307100

24. Zhang YN, Wang J, Chen J, Zhou C, Xie Q. Phototransformation of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in natural waters: important roles of dissolved organic matter and chloride ion. Environ Sci Technol. 2018;52(18): 10490–9. doi: 10.1021/acs.est.8b03258 30141914

25. Perret S, Morlay C, Cromer M, Vittori O. Polarographic study of the removal of cadmium(II) and lead(II) from dilute aqueous solution by a synthetic flocculant. Comparison with copper(II) and nickel(II). Water Res. 2000;34(14): 3614–20.

26. Zanuy D, Aleman C, Munoz-Guerra S. On the helical conformation of un-ionized poly(gamma-D-glutamic acid). Int J Biol Macromol. 1998;23(3): 175–184. 9777704

27. Agresti C, Tu ZG, Ng C, Yang YS, Liang JF. Specific interactions between diphenhydramine and alpha-helical poly(glutamic acid)—a new ion-pairing complex for taste masking and pH-controlled diphenhydramine release. Eur J Pharm Biopharm. 2008;70(1): 226–233. doi: 10.1016/j.ejpb.2008.04.004 18514496

28. He LM, Neu MP, Vanderberg LA. Bacillus lichenformis gamma-glutamyl exopolymer: physicochemical characterization and U(VI) interaction. Environ Sci Technol. 2000;34(9): 1694–1701.

29. Guibaud G, Comte S, Bordas F, Baudu M. Metal removal from single and multimetallic equimolar systems by extracellular polymers extracted from activated sludges as evaluated by SMDE polarography. Process Biochem. 2005;40(2): 661–8.

30. Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS Part II. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation. Enzyme Microb Tech. 2006;38(1–2): 246–52.

31. Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater. 2008;151(1): 185–93. doi: 10.1016/j.jhazmat.2007.05.070 17611021

32. Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol. 2018;38(8): 1176–1194. doi: 10.1080/07388551.2018.1451984 29631430

33. Wang LL, Wang LF, Ren XM, Ye XD, Li WW, Yuan SJ, et al. pH dependence of structure and surface properties of microbial EPS. Environ Sci Technol. 2012;46(2): 737–744. doi: 10.1021/es203540w 22191521

34. Mclean RJC, Beauchemin D, Clapham L, Beveridge TJ. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microb. 1990;56(12): 3671–3677.

35. Boström M, Williams DRM, Ninham BW. Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett. 2001;87(16): 168103. doi: 10.1103/PhysRevLett.87.168103 11690249

36. Bhattacharjee A, Hofer TS, Pribil AB, Randolf BR, Lim LHV, Lichtenberger AF, et al. Revisiting the hydration of Pb(II): A QMCF MD approach. J Phys Chem B. 2009; 113(39): 13007–13013. doi: 10.1021/jp905848x 19728688

37. Garcia-Alvarez M, Alvarez J, Alla A, de Ilarduya AM, Herranz C, Munoz-Guerra S. Comb-like ionic complexes of cationic surfactants with bacterial poly(gamma-glutamic acid) of racemic composition. Macromol. Biosci. 2005;5(1): 30–38. doi: 10.1002/mabi.200400146 15635713


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…