Characterization of Monkeypox virus dissemination in the black-tailed prairie dog (Cynomys ludovicianus) through in vivo bioluminescent imaging

Autoři: Zachary P. Weiner aff001;  Johanna S. Salzer aff001;  Elizabeth LeMasters aff001;  James A. Ellison aff001;  Ashley V. Kondas aff001;  Clint N. Morgan aff001;  Jeffery B. Doty aff001;  Brock E. Martin aff001;  Panayampalli Subbian Satheshkumar aff001;  Victoria A. Olson aff001;  Christina L. Hutson aff001
Působiště autorů: Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United states of America aff001;  Laboratory Leadership Service assigned to Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United states of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222612


Monkeypox virus (MPXV) is a member of the genus Orthopoxvirus, endemic in Central and West Africa. This viral zoonosis was introduced into the United States in 2003 via African rodents imported for the pet trade and caused 37 human cases, all linked to exposure to MPXV-infected black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs have since become a useful model of MPXV disease, utilized for testing of potential medical countermeasures. In this study, we used recombinant MPXV containing the firefly luciferase gene (luc) and in vivo imaging technology to characterize MPXV pathogenesis in the black-tailed prairie dog in real time. West African (WA) MPXV could be visualized using in vivo imaging in the nose, lymph nodes, intestines, heart, lung, kidneys, and liver as early as day 6 post infection (p.i.). By day 9 p.i., lesions became visible on the skin and in some cases in the spleen. After day 9 p.i., luminescent signal representing MPXV replication either increased, indicating a progression to what would be a fatal infection, or decreased as infection was resolved. Use of recombinant luc+ MPXV allowed for a greater understanding of how MPXV disseminates throughout the body in prairie dogs during the course of infection. This technology will be used to reduce the number of animals required in future pathogenesis studies as well as aid in determining the effectiveness of potential medical countermeasures.

Klíčová slova:

Dogs – Euthanasia – Lesions – Luciferase – Luminescence – Spleen – Viral replication – Skin infections


1. Doshi RH, Guagliardo SAJ, Dzabatou-Babeaux A, Likouayoulou C, Ndakala N, Moses C, et al. Strengthening of Surveillance during Monkeypox Outbreak, Republic of the Congo, 2017. Emerg Infect Dis. 2018;24(6):1158–60. Epub 2018/05/19. doi: 10.3201/eid2406.180248 29774865

2. Nakoune E, Lampaert E, Ndjapou SG, Janssens C, Zuniga I, Van Herp M, et al. A Nosocomial Outbreak of Human Monkeypox in the Central African Republic. Open Forum Infect Dis. 2017;4(4):ofx168. Epub 2018/05/08. doi: 10.1093/ofid/ofx168 29732376

3. Yinka-Ogunleye A, Aruna O, Ogoina D, Aworabhi N, Eteng W, Badaru S, et al. Reemergence of Human Monkeypox in Nigeria, 2017. Emerg Infect Dis. 2018;24(6):1149–51. Epub 2018/04/06. doi: 10.3201/eid2406.180017 29619921

4. Jezek Z, Szczeniowski M, Paluku KM, Mutombo M. Human monkeypox: clinical features of 282 patients. J Infect Dis. 1987;156(2):293–8. Epub 1987/08/01. doi: 10.1093/infdis/156.2.293 3036967.

5. McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260–7. Epub 2013/10/26. doi: 10.1093/cid/cit703 24158414.

6. Breman JG, Kalisa R, Steniowski MV, Zanotto E, Gromyko AI, Arita I. Human monkeypox, 1970–79. Bull World Health Organ. 1980;58(2):165–82. Epub 1980/01/01. 6249508

7. Jezek Z, Grab B, Szczeniowski M, Paluku KM, Mutombo M. Clinico-epidemiological features of monkeypox patients with an animal or human source of infection. Bull World Health Organ. 1988;66(4):459–64. Epub 1988/01/01. 2844428

8. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology. 2005;340(1):46–63. Epub 2005/07/19. doi: 10.1016/j.virol.2005.05.030 16023693.

9. Learned LA, Reynolds MG, Wassa DW, Li Y, Olson VA, Karem K, et al. Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am J Trop Med Hyg. 2005;73(2):428–34. Epub 2005/08/17. 16103616.

10. Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, et al. A tale of two clades: monkeypox viruses. J Gen Virol. 2005;86(Pt 10):2661–72. Epub 2005/09/28. doi: 10.1099/vir.0.81215-0 16186219.

11. Doty JB, Malekani JM, Kalemba LN, Stanley WT, Monroe BP, Nakazawa YU, et al. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-Animal Interface in the Democratic Republic of the Congo. Viruses. 2017;9(10). Epub 2017/10/04. doi: 10.3390/v9100283 28972544

12. Durski KN, McCollum AM, Nakazawa Y, Petersen BW, Reynolds MG, Briand S, et al. Emergence of Monkeypox—West and Central Africa, 1970–2017. MMWR Morb Mortal Wkly Rep. 2018;67(10):306–10. Epub 2018/03/16. doi: 10.15585/mmwr.mm6710a5 29543790

13. Gross E. Update on emerging infections: news from the Centers for Disease Control and prevention. Update: Multistate outbreak of monkeypox—Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. Ann Emerg Med. 2003;42(5):660–2; discussion 2–4. Epub 2003/10/29. doi: 10.1016/S0196064403008199 14581919.

14. Vaughan A, Aarons E, Astbury J, Balasegaram S, Beadsworth M, Beck CR, et al. Two cases of monkeypox imported to the United Kingdom, September 2018. Euro Surveill. 2018;23(38). Epub 2018/09/27. doi: 10.2807/1560-7917.ES.2018.23.38.1800509 30255836

15. A Patient with Monkeypox was Diagnosed at Shaare Zedek Hospital [Internet]. 2018; October 12; [1]

16. Hutson CL, Lee KN, Abel J, Carroll DS, Montgomery JM, Olson VA, et al. Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am J Trop Med Hyg. 2007;76(4):757–68. Epub 2007/04/12. 17426184.

17. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350(4):342–50. Epub 2004/01/23. doi: 10.1056/NEJMoa032299 14736926.

18. Earl PL, Americo JL, Cotter CA, Moss B. Comparative live bioluminescence imaging of monkeypox virus dissemination in a wild-derived inbred mouse (Mus musculus castaneus) and outbred African dormouse (Graphiurus kelleni). Virology. 2015;475:150–8. Epub 2014/12/03. doi: 10.1016/j.virol.2014.11.015 25462355

19. Hutson CL, Carroll DS, Gallardo-Romero N, Drew C, Zaki SR, Nagy T, et al. Comparison of Monkeypox Virus Clade Kinetics and Pathology within the Prairie Dog Animal Model Using a Serial Sacrifice Study Design. Biomed Res Int. 2015;2015:965710. Epub 2015/09/18. doi: 10.1155/2015/965710 26380309

20. Hutson CL, Carroll DS, Self J, Weiss S, Hughes CM, Braden Z, et al. Dosage comparison of Congo Basin and West African strains of monkeypox virus using a prairie dog animal model of systemic orthopoxvirus disease. Virology. 2010;402(1):72–82. Epub 2010/04/09. doi: 10.1016/j.virol.2010.03.012 20374968.

21. Hutson CL, Olson VA, Carroll DS, Abel JA, Hughes CM, Braden ZH, et al. A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J Gen Virol. 2009;90(Pt 2):323–33. Epub 2009/01/15. doi: 10.1099/vir.0.005108-0 19141441.

22. Falendysz EA, Londono-Navas AM, Meteyer CU, Pussini N, Lopera JG, Osorio JE, et al. Evaluation of monkeypox virus infection of black-tailed prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging. J Wildl Dis. 2014;50(3):524–36. Epub 2014/05/02. doi: 10.7589/2013-07-171 24779460

23. Blasco R, Moss B. Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene. 1995;158(2):157–62. Epub 1995/06/09. doi: 10.1016/0378-1119(95)00149-z 7607536.

24. Sikes RS, Animal C, Use Committee of the American Society of M. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97(3):663–88. Epub 2016/06/09. doi: 10.1093/jmammal/gyw078 29692469

25. Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006;36(3):194–203. Epub 2006/05/30. doi: 10.1016/j.jcv.2006.03.012 16731033.

26. Hutson CL, Gallardo-Romero N, Carroll DS, Salzer JS, Ayers JD, Doty JB, et al. Analgesia during Monkeypox Virus Experimental Challenge Studies in Prairie Dogs (Cynomys ludovicianus). J Am Assoc Lab Anim Sci. 2019;58(4):485–500. Epub 2019/05/31. doi: 10.30802/AALAS-JAALAS-18-000036 31142401

27. Falendysz EA, Lopera JG, Lorenzsonn F, Salzer JS, Hutson CL, Doty J, et al. Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging. PLoS Negl Trop Dis. 2015;9(10):e0004130. Epub 2015/10/31. doi: 10.1371/journal.pntd.0004130 26517839

28. Falendysz EA, Lopera JG, Doty JB, Nakazawa Y, Crill C, Lorenzsonn F, et al. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.). PLoS Negl Trop Dis. 2017;11(8):e0005809. Epub 2017/08/23. doi: 10.1371/journal.pntd.0005809 28827792

29. Cook SH, Griffin DE. Luciferase imaging of a neurotropic viral infection in intact animals. J Virol. 2003;77(9):5333–8. Epub 2003/04/15. doi: 10.1128/JVI.77.9.5333-5338.2003 12692235

30. Luker KE, Luker GD. Real-time bioluminescence imaging of viral pathogenesis. Methods Mol Biol. 2009;574:125–35. Epub 2009/08/18. doi: 10.1007/978-1-60327-321-3_11 19685305

31. Ozkaya H, Akcan AB, Aydemir G, Aydinoz S, Razia Y, Gammon ST, et al. Salmonella typhimurium infections in BALB/c mice: a comparison of tissue bioluminescence, tissue cultures and mice clinical scores. New Microbiol. 2012;35(1):53–9. Epub 2012/03/02. 22378553.

Článek vyšel v časopise


2019 Číslo 9