Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices


Autoři: María Jesús González-Pabón aff001;  Federico Figueredo aff001;  Diana C. Martínez-Casillas aff001;  Eduardo Cortón aff001
Působiště autorů: Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222538

Souhrn

Microbial fuel cells (MFCs) can evolve in a viable technology if environmentally sound materials are developed and became available at low cost for these devices. This is especially important not only for the designing of large wastewater treatment systems, but also for the fabrication of low-cost, single-use devices. In this work we synthesized membranes by a simple procedure involving easily-biodegradable and economic materials such as poly (vinyl alcohol) (PVA), chitosan (CS) and the composite PVA:CS. Membranes were chemical and physically characterized and compared to Nafion®. Performance was studied using the membrane as separator in a typical H-Type MFCs showing that PVA:CS membrane outperform Nafion® 4 times (power production) while being 75 times more economic. We found that performance in MFC depends over interactions among several membrane characteristics such as oxygen permeability and ion conductivity. Moreover, we design a paper-based micro-scale MFC, which was used as a toxicity assay using 16 μL samples containing formaldehyde as a model toxicant. The PVA:CS membrane presented here can offer low environmental impact and become a very interesting option for point of need single-use analytical devices, especially in low-income countries where burning is used as disposal method, and toxic fluoride fumes (from Nafion®) can be released to the environment.

Klíčová slova:

Membrane electrophysiology – Membrane potential – Oxygen – Protons – Toxicity – Artificial membranes – Cross-linking – Anodes


Zdroje

1. Pant D, Singh A, Van Bogaert G, Irving Olsen S, Singh Nigam P, Diels L, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012;2: 1248–1263. doi: 10.1039/C1RA00839K

2. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosens Bioelectron. 2015;63: 580–590. doi: 10.1016/j.bios.2014.04.034 24856922

3. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens Bioelectron. 2015;63: 591–601. doi: 10.1016/j.bios.2014.04.053 24906984

4. Figueredo F, Cortón E, Abrevaya XC. In situ search for extraterrestrial life: A microbial fuel cell–based sensor for the detection of photosynthetic metabolism. Astrobiology. 2015;15: 717–727. doi: 10.1089/ast.2015.1288 26325625

5. Choi S. Microscale microbial fuel cells: Advances and challenges. Biosens Bioelectron. 2015;69: 8–25. doi: 10.1016/j.bios.2015.02.021 25703724

6. Choi G, Hassett DJ, Choi S. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria. Analyst. 2015;140: 4277–4283. doi: 10.1039/C5AN00492F 25939879

7. Figueredo F, González-Pabón MJ, Cortón E. Low cost layer by layer construction of CNT/Chitosan flexible paper-based electrodes: A versatile electrochemical platform for point of care and point of need testing. Electroanalysis. 2018;30: 497–508. doi: 10.1002/elan.201700782

8. Xu GH, Wang YK, Sheng GP, Mu Y, Yu HQ. An MFC-based online monitoring and alert system for activated sludge process. Sci. Rep. 2014;4: 6779. doi: 10.1038/srep06779 25345502

9. Jia H, Yang G, Wang J, Ngo HH, Guo W, Zhang H, et al. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and up flow anaerobic sludge bed reactor. Bioresour Technol.2016;218: 286–293. doi: 10.1016/j.biortech.2016.06.064 27372008

10. Bollella P, Gorton L. Enzyme based amperometric biosensors. Curr Opin Electrochem. 2018;10: 157–173. doi: 10.1016/j.coelec.2018.06.003

11. Christgen B, Scott K, Dolfing J, Head IM, Curtis TP. An evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLoS One. 2015;10: e0136108. doi: 10.1371/journal.pone.0136108 26305330

12. Das S, Dutta K, Rana D. Polymer electrolyte membranes for microbial fuel cells: A review. Polym Rev. 2018;58: 610–629. doi: 10.1080/15583724.2017.1418377

13. Hernández-Flores G, Poggi-Varaldo HM, Solorza-Feria O. Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells. Int J Hydrogen Energy. 2016;41: 23354–23362. doi: 10.1016/j.ijhydene.2016.08.206

14. Lehmani A, Turq P, Périé M, Périé J, Simonin JP. Ion transport in Nafion® 117 membrane. J Electroanal Chem.1997; 428: 81–89. doi: 10.1016/S0022-0728(96)05060-7

15. Mauritz KA, Moore RB. State of understanding of Nafion. Chem Rev. 2004; 104: 4535–4586. doi: 10.1021/cr0207123 15669162

16. Daud SM, Kim BH, Ghasemi M, Daud WRW. Separators used in microbial electrochemical technologies: Current status and future prospects. Bioresour Technol. 2015;195: 170–179. doi: 10.1016/j.biortech.2015.06.105 26141668

17. Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J. 2016;55: 427–443. doi: 10.1016/j.aej.2015.10.008

18. Li X, Liu G, Sun S, Ma F, Zhou S, Lee JK, et al. Power generation in dual chamber microbial fuel cells using dynamic membranes as separators. Energy Convers Manag. 2018;165: 488–494. doi: 10.1016/j.enconman.2018.03.074

19. Wu H, Fu Y, Guo C, Li Y, Jiang N, Yin C. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. Bioresour Technol. 2018;260: 130–134. doi: 10.1016/j.biortech.2018.03.133 29625284

20. Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron. 2015;69: 54–70. doi: 10.1016/j.bios.2015.02.013 25703729

21. Batista MKS, Pinto LF, Gomes CAR, Gomes P. Novel highly-soluble peptide–chitosan polymers: Chemical synthesis and spectral characterization. Carbohydr Polym. 2006; 64: 299–305. doi: 10.1016/j.carbpol.2005.11.040

22. Dashtimoghadam E, Hasani-Sadrabadi MM, Moaddel H. Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polym Adv Technol. 2009;21: 726–734. doi: 10.1002/pat.1496

23. Witt MA, Barra GMO, Bertolino JR, Pires ATN. Crosslinked chitosan/poly (vinyl alcohol) blends with proton conductivity characteristic. J Braz Chem Soc. 2010;21: 1692–1698. doi: 10.1590/S0103-50532010000900014

24. Kalaiselvimary J, Sundararajan M, Prabhu MR. Preparation and characterization of chitosan-based nanocomposite hybrid polymer electrolyte membranes for fuel cell application. Ionics (Kiel). 2018;24: 3555–3571. doi: 10.1007/s11581-018-2485-7

25. Ye YS, Rick J, Hwang BJ. Water soluble polymers as proton exchange membranes for fuel cells. Polymers (Basel). 2012; 4: 913–963. doi: 10.1002/smll.201101879

26. Rhim J, Park H, Lee C, Jun J, Kim D, Lee Y. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Memb Sci.2004;238: 143–151. doi: 10.1016/j.memsci.2004.03.030

27. Xu D, Hein S, Wang K. Chitosan membrane in separation applications. Mater Sci Technol. 2008;24: 1076–1087. doi: 10.1179/174328408X341762

28. Mathuriya AS, Jadhav DA, Ghangrekar MM. Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol. 2018;102: 9419–9432. doi: 10.1007/s00253-018-9339-0 30259099

29. Goswami R, Mishra VK. A review of design, operational conditions and applications of microbial fuel cells. Biofuels. 2018; 9: 203–220. doi: 10.1080/17597269.2017.1302682

30. Modi A, Singh S, Verma N. Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode. Int J Hydrogen Energy. 2017;42: 3271–3280. doi: 10.1016/j.ijhydene.2016.10.041

31. Veerubhotla R, Bandopadhyay A, Das D, Chakraborty S. Instant power generation from an air-breathing paper and pencil based bacterial bio-fuel cell. Lab Chip. 2015;15: 2580–2583. doi: 10.1039/C5LC00211G 25998260

32. Lv C, Liang B, Zhong M, Li K, Qi Y. Activated carbon-supported multi-doped graphene as high-efficient catalyst to modify air cathode in microbial fuel cells. Electrochim Acta. 2019;304: 360–369. doi: 10.1016/j.electacta.2019.02.094

33. Chatterjee P, Ghangrekar M, Leech D. A brief review on recent advances in air-cathode microbial fuel cells. Environ Eng Manag J. 2018;17: 1531–1544.

34. Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, et al. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci. 2018;564: 508–522. doi: 10.1016/j.memsci.2018.07.051

35. Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron. 2016;77: 774–89. doi: 10.1016/j.bios.2015.10.032 26513284

36. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chemie Int. 2007; 46: 1318–1320. doi: 10.1002/anie.200603817 17211899

37. Chouler J, Cruz-Izquierdo Á, Rengaraj S, Scott JL, Di Lorenzo M. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens Bioelectron. 2018;102: 49–56. doi: 10.1016/j.bios.2017.11.018 29121559

38. Desmet C, Marquette CA, Blum LJ, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens Bioelectron. 2016;76: 145–163. doi: 10.1016/j.bios.2015.06.052 26163746

39. Mukoma P, Jooste BR, Vosloo HCM. A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. J Memb Sci. 2004; 243: 293–299. doi: 10.1016/j.memsci.2004.06.032

40. Ma J, Sahai Y. A direct borohydride fuel cell with thin film anode and polymer hydrogel membrane. ECS Electrochem Lett. 2012;1: F41–F43. doi: 10.1149/2.005206eel

41. Darbari ZM, Mungray AA. Synthesis of an electrically cleanable forward osmosis membrane. Desalin Water Treat. 2016; 57: 1634–1646. doi: 10.1080/19443994.2014.978390

42. Mukoma P, Jooste BR, Vosloo HCM. Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. J Power Sources. 2004;136: 16–23. doi: 10.1016/j.jpowsour.2004.05.027

43. Rudra R, Kumar V, Kundu PP. Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv. 2015;5: 83436–83447. doi: 10.1039/C5RA16068E

44. Pasini Cabello SD, Ochoa NA, Takara EA, Mollá S, Compañ V. Influence of Pectin as a green polymer electrolyte on the transport properties of Chitosan-Pectin membranes. Carbohydr Polym. 2017;157: 1759–1768. doi: 10.1016/j.carbpol.2016.11.061 27987892

45. Srinophakun P, Thanapimmetha A, Plangsri S, Vetchayakunchai S, Saisriyoot M. Application of modified chitosan membrane for microbial fuel cell: Roles of proton carrier site and positive charge. J Clean Prod. 2017;142: 1274–1282. doi: 10.1016/j.jclepro.2016.06.153

46. Kim Y, Shin SH, Chang IS, Moon SH. Characterization of uncharged and sulfonated porous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells. J Memb Sci. 2014;463: 205–214. doi: 10.1016/j.memsci.2014.03.061

47. Lee CH, Park HB, Lee YM, Lee RD. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind Eng Chem Res. 2005;44: 7617–7626. doi: 10.1021/ie0501172

48. Ji E, Moon H, Piao J, Ha PT, An J, Kim D, et al. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength. Biosens Bioelectron. 2011;26: 3266–3271. doi: 10.1016/j.bios.2010.12.039 21255993

49. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Rahimi Z. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane. Energy. 2017;125: 427–438. doi: 10.1016/j.energy.2017.02.146

50. Holder SL, Lee CH, Popuri SR, Zhuang MX. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation. Carbohydr Polym. 2016;149: 251–262. doi: 10.1016/j.carbpol.2016.04.118 27261749

51. Smitha B, Sridhar S, Khan AA. Synthesis and characterization of poly(vinyl alcohol)-based membranes for direct methanol fuel cell. J Appl Polym Sci. 2005;95: 1154–1163. doi: 10.1002/app.20982

52. Habiba U, Afifi AM, Salleh A, Ang BC. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr 6+, Fe 3+ and Ni 2+.J Hazard Mater. 2017; 322: 182–194. doi: 10.1016/j.jhazmat.2016.06.028 27436300

53. Martins J, De Oliveira A, Garcia P, Kipper M, Martins A. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties. Carbohydr Polym. 2018;188: 136–142. doi: 10.1016/j.carbpol.2018.01.112 29525149

54. Ma J, Choudhury NA, Sahai Y, Buchheit RG. A high performance direct borohydride fuel cell employing cross-linked chitosan membrane. J Power Sources. 2011;196: 8257–8264. doi: 10.1016/j.jpowsour.2011.06.009

55. Sahebjamee N, Soltanieh M, Mousavi SM, Heydarinasab A. Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane. Carbohydr Polym. 2019;210: 264–273. doi: 10.1016/j.carbpol.2019.01.074 30732763

56. Chen G, Wei B, Luo Y, Logan BE, Hickner MA. Polymer Separators for high-power, high-efficiency microbial fuel cells. ACS Appl. Mater. Interfaces. 2012, 4:6454–6457. doi: 10.1021/am302301t 23167669

57. Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels. 2008;22: 169–176. doi: 10.1021/ef700308u

58. Stenina IA, Sistat P, Rebrov AI, Pourcelly G, Yaroslavtsev AB. Ion mobility in Nafion-117 membranes. Desalination. 2004;170: 49–57. doi: 10.1016/j.desal.2004.02.092

59. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrogen Energy. 2010;35: 13379–13386. doi: 10.1016/j.ijhydene.2009.11.114

60. Unnikrishnan EK, Kumar SD, Maiti B. Permeation of inorganic anions through Nafion ionomer membrane. J Memb Sci. 1997;137: 133–137. doi: 10.1016/S0376-7388(97)00193-2

61. Mohammadifar M, Zhang J, Yazgan I, Sadik O, Choi S. Power-on-paper: Origami-inspired fabrication of 3-D microbial fuel cells. Renew Energy. 2018;118: 695–700. doi: 10.1016/j.renene.2017.11.059

62. Veerubhotla R, Das D, Pradhan D. A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes. Biosens Bioelectron. 2017; 94: 464–470. doi: 10.1016/j.bios.2017.03.020 28340466

63. Yee RSL, Rozendal RA, Zhang K, Ladewig BP. Cost effective cation exchange membranes: A review. Chem Eng Res Des. 2012;90: 950–959. doi: 10.1016/j.cherd.2011.10.015

64. Chiellini E, Corti A, D’Antone S, Solaro R. Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci. 2003;28: 963–1014. doi: 10.1016/S0079-6700(02)00149-1

65. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem. 1991;95(15): 6040–6044.

66. Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol. 2011;102: 6291–6294. doi: 10.1016/j.biortech.2011.02.003 21402475

67. Ayyaru S, Dharmalingam S. Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour Technol. 2011;102: 11167–11171. doi: 10.1016/j.biortech.2011.09.021 22000968

68. Hernández-Flores G, Poggi-Varaldo HM, Solorza-Feria O, Ponce-Noyola MT, Romero-Castañón T, Rinderknecht-Seijas N, et al. Characteristics of a single chamber microbial fuel cell equipped with a low cost membrane. Int J Hydrogen Energy. 2015;40: 17380–17387. doi: 10.1016/j.ijhydene.2015.10.024

69. Hernández-Flores G, Poggi-Varaldo HM, Solorza-Feria O, Romero-Castañón T, Ríos-Leal E, Galíndez-Mayer J, et al. Batch operation of a microbial fuel cell equipped with alternative proton exchange membrane. Int J Hydrogen Energy. 2015;40: 17323–17331. doi: 10.1016/j.ijhydene.2015.06.057

70. Narayanaswamy Venkatesan P, Dharmalingam S. Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application. J Mater Sci. 2015;50: 6302–6312. doi: 10.1007/s10853-015-9167-x

71. Sivasankaran A, Sangeetha D, Ahn YH. Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated SiO 2 for microbial fuel cell application. Chem Eng J. 2016;289: 442–451. doi: 10.1016/j.cej.2015.12.095

72. Tiwari BR, Noori MT, Ghangrekar MM. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Mater Chem Phys. 2016;182: 86–93. doi: 10.1016/j.matchemphys.2016.07.008

73. Angioni S, Millia L, Bruni G, Ravelli D, Mustarelli P, Quartarone E. Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells. J Power Sources. 2017;348: 57–65. doi: 10.1016/j.jpowsour.2017.02.084

74. Chouler J, Bentley I, Vaz F, O’Fee A, Cameron PJ, Di Lorenzo M. Exploring the use of cost-effective membrane materials for microbial fuel cell based sensors. Electrochim Acta.2017; 231: 319–326. doi: 10.1016/j.electacta.2017.01.195

75. Harewood AJT, Popuri SR, Cadogan EI, Lee CH, Wang CC. Bioelectricity generation from brewery wastewater in a microbial fuel cell using chitosan/biodegradable copolymer membrane. Int J Environ Sci Technol. 2017;14: 1535–1550. doi: 10.1007/s13762-017-1258-6


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se