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SOUHRN

Pratokova cytometrie je metoda, kterd umoznuje simul-
tanni méreni a analyzu fyzikdlnich a chemickych vlast-
nosti buriky nebo jinych biologickych ¢astic béhem jejich
prichodu laserovym paprskem. | kdyz je tato metoda
vyuzivana predevsim pri studiu bunécné diferenciace
a funkéni analyzy eukaryotickych bunék, zakladni principy
pratokové cytometrie se daji aplikovat i na mikroorga-
nismy. Metody zaloZzené na analyze jedné bunky, jako je
pratokovad cytometrie v kombinaci s mérenim bunécné
viability pomoci specialnich fluorescencnich sond umoz-
nuji hlubsi vhled do rdznorodosti populaci a fungovani

ABSTRACT

Lochmanova A., Chmelaf D., Beran V., Hijek M.: Flow
cytometry in microbiology

Flow cytometry is a method that allows simultaneous
measurement and analysis of physical and chemical cha-
racteristics of cells or other biological particles during their
passage through the laser beam. Although this method is
mainly used in the study of cell differentiation and func-
tional analysis of eukaryotic cells, the basic principles of
flow cytometry can be applied to microorganisms. Methods
based on the analysis of a single cell, such as flow cyto-
metry, in combination with measurement of cell viability
using special fluorescent probes allow a deeper insight into

uvob

Cytometrie je obecny nazev pro skupinu biologickych me-
tod pouzivanych pro méfeni riznych parametrl bunék.
Parametry, které mohou byt méfeny cytometrickymi meto-
dami, zahmuji napt. velikost a morfologii bunék, faze bu-
nécného cyklu, obsah DNA, existenci nebo neexistenci spe-
cifickych proteinti na buné¢ném povrchu nebo v cytoplazmé
a fadu dalsich. Metody Kklasické (analytické) cytometrie
vyuzivaji pro analyzu vlastnosti bunék optické technologie
zalozené predevsim na bazi mikroskopie. Pritokova cytome-
trie je moderni analyticka metoda umoznujici simultanni
meéfeni a analyzu fyzikalnich a chemickych vlastnosti buti-
ky nebo jinych biologickych ¢astic béhem jejich prichodu
laserovym paprskem. Jeji jedinecnost spociva v moznosti
analyzy mnoha vlastnosti a charakteristik na drovni jedné
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mikrobidlnich spolec¢enstev a také usnadnuji pochopeni
fyziologické rlznorodosti zdanlivé podobné plsobicich
populaci. Pfi uziti specifickych fluorescenc¢nich barviv pro
selektivni znaceni vybranych druh@ mikroorganismd, je
metoda potencialné velmi specificka. Cilem tohoto sdéleni
je strucny prehled aplikaci pritokové cytometrie, které je
mozno vyuzit v mikrobiologii.

KLICOVA SLOVA:

prutokova cytometrie - mikrobiologie - bunééna identifikace
- bunécna viabilita - fluorescenc¢ni sonda

the diversity of populations and functioning of microbial
communities and also facilitate understanding the phy-
siological diversity of seemingly similar acting populations.
When using specific fluorescent dyes for the selective la-
beling of selected species of microorganisms, the method
is potentially very specific. The aim of this paper is a brief
overview of applications of flow cytometry, which can be
used in microbiology.
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buriky, a to opakované ve vzorku o velkém mnozstvi bunék
béhem velmi kratkého casového tseku. I kdyz vétSina ko-
mercné dostupnych pritokovych cytometr byla piivodné
konstruovana pro analyzu eukaryotnich bunék (napft. lym-
focytlt), v soucasné dobé je stale Castéji vyuzivanaivdalsich
oblastech bunécné biologie. Priitokova cytometrie miize
byt vyuzita napft. ke studiu autofluorescencnich vlastnosti
fotosyntetického planktonu, na zakladé kterych lze urcit
jeho mnozstvi a strukturu jednotlivych spolecenstvi. V pro-
teinovém inZenyrstvi se pritokova cytometrie pouziva pro
identifikaci bunék zalozené na zdkladé exprese povrchovych
proteinovych variant spojenych s urcitymi pozadovanymi
vlastnostmi. V poslednich letech roste pocet aplikaci prii-
tokové cytometrie i v mikrobiologii.

Prvni informace o pratokové cytometrii byla publikovana
vroce 1934 Moldavanem, jako prakticka metoda vyuZivana
pro analyzu bunék v suspenzi byla zavedena az ve 40. letech



minulého stoleti. Vroce 1947 aplikoval Gucker tuto metodu
pro detekci bakterii v aerosolu. Nasledny rozvoj této techni-
ky vedl k dalsimu vyuZiti v mikrobiologii jako napft. sledo-
vani kinetiky bunécného cyklu, rozlieni grampozitivnich
a gramnegativnich bakterii, stanoveni Zivotaschopnosti
bunék na zakladé sledovani metabolické aktivity buriky
nebo integrity bunécné membrany (12, 28, 31].

Priitokovy cytometr je sloZen z nékolika zakladnich soucasti,
a to excita¢niho zdroje, méfici optické cely, fotodetektor,
systému zrcadel, optickych filtri a nékolika fluorescencnich
detektordl sefazenych podle vzristajici vinové délky emi-
tované fluorescence. Excitacnim zdrojem byva nejcastéji
laser, nejcastéji pouzivanym laserem je vzduchem chlazeny
argonovy laser, ktery emituje zafeni s vinovou délkou 488
nm. V méfici cele dochazi ke stfetu svétla z excitacniho
zdroje a prochazejicimi burikami. Svétlo se pak rozptyli,
odrazi nebo vyvola fluorescenci. Pti priichodu buriky paprs-
kem svétla je analyzovano kvantum fotonti dopadajicich na
fotodetektor zafazeny jednak ve sméru pivodniho paprsku
(oznacovany jako ,,forward scatter* - FSC) a dale pod iihlem
90° (,,side scatter” - SSC). Intenzita paprskii dopadajicich na
FSC je pfimo timérna velikosti buriky, intenzita paprskii
tvoricich thel bo¢niho lomu svétla (SSC) odrazi vnitini kom-
plexitu bunék a je imérna granularité bunky (stav cytosolu,
bunécné inkluze, granula atd.) - obrazek 1. Fluorescence
patii mezi fotoluminiscencni jevy vyvolané svételnym zare-
nim z oblasti viditelného popft. ultrafialového svétla. K fluo-
rescenci dochazi pouze pti dodavani energie, respektive pti
ozatovani excitacnim zafenim. Fluorescence emitovana
jednotlivymi fluorochromy je detekovana pomoci specific-
kych fluorescenc¢nich kandlli umozriujicich volbu vinové
délky analyzovaného signalu pomoci soustavy optickych
filtrli a zrcadel. Zakladni vlastnosti vSech fluorochrom je
schopnost absorbovat a emitovat svétlo o specifické vinové
délce. Po absorpci svételné energie se fluorochromy dosta-
vajido nestabilniho excitovaného stavu, kdy jsou elektrony
posunuty do vyssi energetické hladiny. Pfi navratu elektro-
nd do stabilniho neexcitovaného stavu dochazi k uvolnéni
energie ve formé emitovaného svétla. Vinova délka pouzita
kexcitaci fluorochromu je vzdy krat$i nez vinova délka svétla
emitovaného (tzv. Stokestiv posun). Kazda fluorescencni
latka ma sva charakteristicka excitacni a emisni pasma.
Nékteré fluorochromy (DAPI, ethidium bromid, propi-
dium jodid) se samy o sobé vaZou na urcité molekuly a jsou
zodpovédné za prirozenou fluorescenci vzorku. Pro vétSinu
struktur v butice oviem neexistuje fluorofor, ktery by se na
né specificky vazal. Pro biologicky vyzkum se proto vyuZzivaji
tzv. nevlastni fluorochromy, které se umeéle zavedou do stu-
dovaného systému a které nesou jasné definované excitacni
a emisni maxima. Pokud v experimentu pouZzivame vice
fluorochrom, m@Ze dojit k situaci, kdy z divodu prekry-
vu vlnovych délek signal urcitého fluorochromu zaroven
obsahuje urcity podil i signalu fluorochromu sousediciho.
To miiZe v kone¢ném disledku vést k chybnym interpreta-
cim signalu a byt divodem nespravnych experimentilnich
vysledkl. Pro experimenty se simultanni detekci dvou a vice
fluorochromt je tfeba kombinovat fluorochromy s opti-
malnimi spektry. Problém prekryvu lze vyfesit i korekci
emisniho pasma tzv. kompenzaci.

Optické signaly jsou v detektorech prevadény na elektrické
impulsy, které jsou dale digitalné zpracovavany. Vysledek je
vyjadren graficky v podobé jednoparametrového histogra-
mu nebo dvouparametrové pomoci tzv. dot plota (obr. 2).
Detekovat je mozno nékolik zdroji bunécné fluorescence,
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Obr. 1. Dvouparametrovy dot plot zobrazujici bakteridlni populaci
na zékladé pfimého (FSC) a boc¢niho (SSC) rozptylu svétla

Figure 1. Two-parameter dot plot representing the bacterial po-
pulation based on forward scatter (FSC) and side scatter (SSC)

od autofluorescence pigmentti pfes pouziti riznych fluoro-
chrom , které se vaZou nebo reaguji s jednotlivymi mole-
kulami bunék. Hlavni vyhodou této techniky je tzv. mul-
tiparametrova analyza, coz je moznost simultanniho shro-
mazdéni dat o jednotlivych bunikach vztahujicich se k jejich
velikosti, granularité a intracelularnim komponentam,
které 1ze nasledné kombinovat [11, 24, 36].

USKALI PRUTOKOVE CYTOMETRIE
V MIKROBIOLOGII

I kdyz pritokova cytometrie byla vyuzivana od roku 1960
predevsim jako nastroj pro analyzu krevnich bunék, pokrok
ve vyvoji pristrojové optiky a elektroniky stejné jako v oblasti
fluorescencnich sond umoznily vyuzit tuto metodu i ke
studiu dalSich biologickych systémil. Hlavnim faktorem,
ktery omezuje pouziti pritokové cytometrie na poli pro-
karyot, respektive bakterii, je jejich mala velikost, ktera
znesnadnuje jejich detekci v disledku obtizného rozliseni
mezi malymi butikami a buné¢nou drti. Priibéh analyzy
prutokovym cytometrem mohou narusit i bunééné agregaty
tvorené bakteridlnimi fetézci nebo shluky bunék, protoZe
tato technika identifikuje burky prochazejici vysetfovacim
bodem jako jednotlivé udalosti a nemiiZe rozliSovat mezi
jednotlivymi burikami a bunéénymi agregaty. Z tohoto
dtvodu je nutné vzorek pfed analyzou na pritokovém cy-
tometru dobfe zhomogenizovat.

Druhym problémem aplikace priittokové cytometrie v oblasti
mikrobiologie je otdzka pouziti fluorescencnich barviv,
respektive sond. Bakterie jsou obecné méné propustné
pro fluorochromy nez savci buriky, navic fada bakterii ma
velmi t¢inné efluxni pumpy. V takovych piipadech miize
byt barvivo vylouceno ven z butiky velmi rychle. Svou roli
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Vyznamné uplatnéni pii detekci a identifikaci
sav¢ich bunék na zakladé exprese urcitych
specifickych znaki (CD markerti) nasly v pri-
tokové cytometrii fluorescencné znacené mo-
noklonalni protilatky. V mikrobiologii neni
jejich vyuziti tak Siroké, limitujicim fakto-
rem mizZe byt i jejich pomérné vysoka cena.
PouZiti znacenych protilatek je preferovano
pri detekci bakterii, hub nebo prvokl zejména
tam, kde buriky jsou pfitomny buriky ve vel-
mi nizkych koncentracich, napt. ve vzorcich
pitné vody nebo kontrole potravinarskych vy-
robki. Dalsi oblasti vyuZiti je studium exprese
povrchovych struktur dilezitych pro imunitni
rozpoznani a adhezi.

Specifické struktury na povrchu bakterii pred-
stavuji lektiny. I ty mohou byt konjugovany
s fluorescencnimi barvivy a nasledné slouZzit
k ptimé detekci urcitého proteinu [11, 28].

Obr. 1. Grafické vyjadreni vysledku v podobé dvouparametrového dotplotu

Na osu x se vynasi jeden z parametr(, v tomto pfipadé pfitomnost

elementd znac¢enych FITC (Fluoresceinisothiocyanate). Na osu y se vynasi

Bunéd¢na viabilita
Jednou z nejvyznamnéj$ich vlastnosti buriky

druhy z parametrd, v tomto pfipadé se jedna o navazani fluorochromu PE
(Phycoerythrin). Graf byva rozdélen do 4 kvadrant(:

- v levém hornim kvadrantu jsou burky pozitivni pouze pro znak vyneseny na
osey, vtomto pfipadé bunky pozitivni pro znak znaceny PE;

- v pravém hornim kvadrantu jsou burky pozitivni pro znaky vynesené na obou
osach (x, y), resp. dvojité pozitivni buriky exprimujici znaky vdzajici jak PE, tak
FITC;

- v levém dolnim kvadrantu jsou buriky negativni pro oba sledované znaky;

- v pravém dolnim kvadrantu jsou bunky pozitivni pouze pro znak vyneseny na
ose X, v tomto pripadé bunky pozitivni pro znak znaceny FITC.

Figure 1. Graphical expression of the result in the form of a two-parameter dot
plot

One of the parameters, in this case the presence of FITC (fluoresceinisothiocya-
nate) labelled elements, is plotted on the x axis. The other parameter, in this case
fluorochrome-PE (phycoerythrin) conjugate, is plotted on the y axis. The graph
is divided into four quadrants:

- in the upper-left quadrant, there are cells positive only for the parameter plot-
ted on the y axis; in this case, the cells positive for the PE labelled element;

- in the upper-right quadrant, there are cells positive for the parameters plotted

je jeji viabilita, respektive Zivotaschopnost.
Viabilita je definovana jako schopnost bunék
se mnozit a vykazovat metabolickou aktivitu
v danych podminkach. Tradi¢ni pfistup ke
sledovani mikrobidlni viability je zaloZen na
tvorbé kolonii Zivotaschopnych bunék a jejich
nasledném pocitani. Pratokova cytometrie
umoznuje rychlou in situ analyzu na Grovni
jedné buniky, kterd umoznuje rozlisit buniky
reproduktivné Zivotaschopné, metabolicky
aktivni, intaktni (s neporusenou membra-
nou, respektive Zivé) a butiky permeabilizova-
né (s porusenou membranou, respektive mrt-
vé). Metabolicka aktivita buriky nezarucuje
reprodukéni rist, ale mze svédcit o prubéhu
urcitych metabolickych pochodii, které mo-

on both the x and y axes, i.e. double positive cells expressing the elements

binding both PE and FITC;

- in the lower-left quadrant, there are cells negative for both elements studied;

hou vést k biodegradaci, pfeméné organické
hmoty nebo hromadéni toxint [2, 4].

- in the lower-right quadrant, there are cells positive only for the parameter

plotted on the x axis, in this case, for the FITC-labelled element.

hraje i stavba zevni bunécné membrany, napt. narozdil od
G+ bakterii, zevni membrana G-bakterii vylucuje vétsinu
lipofilnich nebo hydrofobnich molekul, jako jsou napf.
cyaninova barviva [35,40].

Pouzivané fluorochromy lze rozdélit podle mechanismu
Ucinku zhruba do tii skupin. Do prvni skupiny fadime bar-
viva, jejichZ vstupu do buriky brani intaktni bunécna mem-
brana, napi. propidium iodid (PI). Vyznamnym cilovym
mistem pro vazbu PI po prostupu bunéénou membranou
je DNA, a proto se Casto vyuziva nejen k urceni Zivotnosti
bunék, ale zejména u eukoaryotnich bunék k analyze bunéc-
ného cyklu. Dalsi skupinu tvoti barviva, kterd se akumuluji
vmetabolicky aktivnich burikach (napt. rhodamine 123), do
tfeti skupiny je mozno zatadit non-fluorogenni prekurzory,
které jsou konvertovany do stadia fluorochromu prostied-
nictvim specifickych enzymi piitomnych v Zivotaschop-
né burice (napf. diacetylfluorescein). Pokud se molekula
barviva vaZe na biologickou matici kovalentné, nazyva se
fluorescencniznacka, pokud se vaZe nekovalentné, oznacuje
se jako fluorescenc¢ni sonda [29].
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a) Membrdnovd integrita

Vsechny mikrobidlni buriky jsou pokryty cy-

toplazmatickou membranou, kterd umoziuje
jejich selektivni kontakt s bezprostfednim okolim. Pro plné
funkéni, zdravé buriky je nezbytna neporusena polarizovana
cytoplazmatickd membrana a aktivni dopravni systémy.
Pouze nékolik fluorescenc¢nich barviv pouZivanych v pri-
tokové cytometrii mtiZe prochazet neporusenou bunécnou
membranou. Pro méfeni integrity bunécné membrany
proto mohou byt pouZita pouze barviva, ktera jsou obvykle
nepropustna pro bunécnou membranu a maji specificka
intracelularni nebo periplazmaticka vazebni mista [19].
Nejcastéji pouzivanou barevnou kombinaci pro prikaz
membranové integrity je pouZiti propidium iodidu (PI)
a fluorescenc¢nich barviv z fady SYTO. PI je viibec nejrozsi-
fenéjsi fluorescencni sonda vyuzivana pro detekci bunécné
viability. Jedna se o fenantrolinové interkala¢ni ¢inidlo,
Kkteré se vaZe na nukleové kyseliny. Barviva fady SYTO pred-
stavuji permeabilni barviva, jejichz fluorescence se vyrazné
zvySuje jejich vazbou na DNA a RNA. Jednotliva barviva
se od sebe 1isi v nékolika charakteristikach, jako je napf.
permeabilita, excitacni a emisni spektrum, selektivita
k DNA nebo RNA atd. Zatimco barviva fady SYTO vstupuji
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Obr. 3. Sledovani Zivotnosti bakteridlni populace E. coli za uziti dvoubarevného znaceni Syto9 a PI
a) zastoupeni zivych a mrtvych bunék v bakteriadlni kulture E. coli vystavené pokojové teploté;
b) zastoupeni zivych a mrtvych bunék v bakteridlni kultufe E. coli vystavené teploté 80 °C po dobu 30 min. (vlastni vysledky, méfeno na

pritokovém cytometru Attune)

Figure 3. Study of the viability of the bacterial population of E. coli using two-colour Syto 9 and Pl labelling
a) Living and dead cells in a bacterial culture of E. coli exposed to room temperature;
b) Living and dead cells in a bacterial culture of E. coli exposed to a temperature of 80 °C for 30 min. (authors' own results, measured using

an Attune flow cytometer)

do buriky neporusenymi membranami, PI prostupuje pouze
poskozenymi membranami bakteridlnich bunék. K posou-
zeni Zivotaschopnych bunék se v kombinaci s PI nejc¢astéji
pouZiva SYTO9. Obé barviva emituji fluorescenci riznych
vinovych délek, kterd je detekovana pomoci specifickych
fluorescenc¢nich kanaldl (obr. 3). Fluorescence emitovana
jednotlivymi fluorochromy v ramci analyzované bakte-
ridlni populace pak umoziuje samostatné vyhodnoceni
bunék jak s neporusenymi, tak porusenymi membranami
(11, 23, 24, 34].

b) Membranovy potencidl

Eukaryotni bunky stejné jako mikroorganismy mohou
reagovat nazmeénu zivotnich podminek zvy$enim nebo sni-
Zenim svého membranového potencialu. Ten je udrzovan
na cytoplazmatické membrané ¢innosti iontovych pump.
Membranovy potencial je zavisly na energetickém metabo-
lismu buriky a k jeho sniZeni dochazi jiz béhem nékolika
minut po odstranéni zdroje energie. Na velikosti membra-
nového potencialu se vyznamnou mérou podili propustnost
bunécné membrany. Pouze metabolicky aktivni buriky, je-
jichZz membrany nebyly poskozeny, jsou schopny generovat
a udrZovat normalni membranovy potencial. V soucasné
dobé je k dispozici fada fluorescencnich barviv, které mohou
byt pouZzity pro méfeni membranového potencialu pomoci
pritokové cytometrie jak u eukaryotnich, tak prokaryotnich
bunék. Jedna se vesmés o lipofilni barviva, kterd mohou
volné prochazet cytoplazmatickou membranou do bunék
a hromadi se v nich v zavislosti na jejich naboji. K bézné
pouzivanym fluorochromtim pro stanoveni membranového
potencialu patfi kationové karbocyaniny (napt. DiOC6),
rhodamin 123 a aniontové oxonoly (bis-(1,3-dibutylbar-

bituric acid) trimethine oxonol), resp. DiBAC4(3). Tato
fluorescencni barviva jsou schopna na zdkladé méniciho
se potencidlu ménit svoje spektralni charakteristiky a tim
podavat optické informace o membranovém potencialu do
svého okoli [6, 21, 26].

¢) Metabolickd aktivita

Sledovani intracelularni enzymové aktivity je dalsi moz-
nosti sledovani bunécné viability. Fluorogenni barviva
pouzivana k ureni metabolické aktivity bakterii jsou casto
vyuzivana v kombinaci s fluorochromy uzivanymi ke sta-
noveni membranové integrity. Metabolicka fluorogenni
barviva pasivné pronikaji do bunék a primarné nemaji
fluorescencni vlastnosti. K jejich pfemeéné na fluoreskujici
produkt dochazi aZ plisobenim urcitych intracelularnich
enzymatickych aktivit.

Fluorogenni substraty esterdz mohou pasivné pronikat do
bunék a méri zachovani enzymatické aktivity bunécnych
esteraz, které je prevadi na fluoreskujici produkt. Z barviv
je moZno jmenovat napft. fluorescein diacetat (FDA), dal-
$imi vhodnymi indikatory vitality jsou napf. calcein AM,
arizné fluorescenc¢ni diacetatové derivaty jako napt. CFDA
(5,6-dikarboxyfluorescein-diacetat). Urceni enzymovych
aktivit pomoci fluorescen¢nich sond je spiSe orientacni
a urCuje, ktera burika ma vyssi enzymovou aktivitu v po-
rovnani s jinou [13, 29].

Vyznamnym a diileZitym faktorem ovliviiujicim metabo-
lismus bakterii je jejich afinita ke kysliku. Obecné toxicita
kysliku pro anaerobni i pro mikroaerofilni bakterie nespoci-
va v pfimém pisobeni kysliku na tyto buriky, ale je realizo-
vana prostrednictvim latek se silnym oxidacnim ti¢inkem,
které vznikaji v prostfedich, kde je pfitomen kyslik. Tyto
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latky jsou obecné oznacovany jako reaktivni formy kysliku
(ROS - Reactive Oxygen Species) a jedna se zejména o super-
oxidovy radikal (O,-), peroxid vodiku (H,0,), hydroxylovy
radikal (-OH) a singletovy kyslik ({0,*). VétSina organismi
se brani ac¢inktm téchto latek tvorbou celé fady enzymu
s katalytickym tucinkem, jako jsou katalazy, peroxidazy
nebo superoxiddismutazy, které predstavuji zakladni prvky
obranného systému organismi proti oxida¢nimu stresu.
K prikazu metabolické aktivity se vyuzivaji tzv. ,,dihydro“
derivaty, napt. rhodamin, DCFH-DA (dichlorodihydro-
fluorescein diacetate). Jedna se o bezbarva, nefluorescen¢ni
barviva, ktera prostfednictvim nékteré z forem reaktivnich
kyslikatych radikald oxiduji na fluoreskujici formu [5,9].

APLIKACE PRUTOKOVE CYTOMETRIE

Vétsina aplikaci pritokové cytometrie je zaméfena na vy-
zkum lidskych, Zivo¢is§nych a rostlinnych bunék. V posled-
nich letech se tato metoda nabizi i jako analyticky nastroj
ke zjiStovani stavu mikroorganismii.

Screeningové vysetfeni bakteriurie a bakterialni
kontaminace

V soucasné dobé jsou bézné dostupné komerc¢ni automa-
tické analyzatory moci umoznujici automatickou analyzu
mocového sedimentu zaloZenou na principu fluorescenc¢ni
pritokové cytometrie. Pomoci plné automatického piistroje
se barvi DNA a membrana formovanych elementd v nativni
moci, a Ize tak diagnostikovat vSechny bunécné elementy
- erytrocyty, leukocyty, epitelové buriky vcetné bakterii.
Vysetfeni ma pomérné vysokou negativni predpovédni hod-
notu, a pristroj tak lze vyuzit pro predkultivacni vySetfeni
vzorkdl moci pii diagnostice mocovych infekci. Metodu je
také mozno vyuzit pro screeningové vysetfeni bakterialni
kontaminace v biologickych preparatech, napt. bunécnych
izolatech [14].

Identifikace G- a G+ bakterii

Gramovo barveni je povazovano za zakladni z hlediska
bakteridlni taxonomie. Prtokova cytometrie pfedstavuje
alternativni metodu pro klasické Gramovo barveni. Vyuziva
kombinace dvou fluorescenc¢nich barviv hexidium jodidu
(HI) a SYTO 13. Zatimco HI pronika grampozitivnimi, ale
nikoliv gramnegativnimi organismy, SYTO 13 pronika obo-
jimi. Rtizné emisni vinové délky téchto dvou fluorochromi
umoznuji rychlou identifikaci a po¢itani gramnegativnich
a grampozitivnich bakterii v suspenzi [20, 27].

Stanoveni citlivosti k antibakteridlnim latkam
Vzhledem ke zvySujicimu se poctu rezistentnich kment
je velka pozornost vénovana i novym metodam ve vyzku-
mu antibakteridlnich latek. Konvenc¢ni metody stanoveni
citlivosti k antibakteridlnim 1atkam zpravidla informuji
jen o prumérné hodnoté citlivosti vztaZené na celou bak-
teridlni populaci. Prutokova cytometrie umoznuje detek-
ci smiSenych populaci, které mohou reagovat na ucinky
antimikrobidlnich 1atek riznymi zptsoby [1]. Metodu lze
s uspéchem vyuZit i pii testovani novych 1é¢iv v kombinaci
s jejich pripadnou toxicitou [38, 39].

Bakteridlni buriky reaguji na rizné antimikrobialni lat-
ky sniZzenim nebo zvySenim membranového potencialu
[30, 39]. ProzjiStovani membranového potencidlu se v tomto
pripadé vyuziva predevsim lipofilnich barviv (Rhodamin
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123, DiBAC,(3), ktera vstupuji do depolarizovanych bunék,
kde se vazi na intracelularni struktury bohaté na lipidy.
Buriky, které jsou vii¢i testovanému antibiotiku resistentni
a maji zachovany membranovy potencial, proto vykazuji
nizkou intenzitu fluorescence, naproti tomu citlivost k da-
nému antibiotiku vyvola depolarizaci membrany vedouci ke
vstupu sondy do butiky a zvySeni intenzity fluorescence [16].
Metodu je mozno vyuzit i ke stanoveni minimalni inhibi¢ni
koncentrace a k testovani antifungalni citlivosti [3, 26].
Zejména antibiotika s baktericidnim tuc¢inkem nici bakte-
ridlni bunky riznymi mechanismy v dasledku specifické
interakce s cilovymi strukturami. Jednim z nich je stimulace
produkce vysoce $kodlivych hydroxylovych radikald, které
1ze rovnéz detekovat za uziti specifickych fluorescencnich
sond [25, 33]. Ke sledovani stupné ucinnosti antibiotik,
kterda maji vliv na strukturalni integritu bunécné stény,
1ze pouzit i fluorescencni barviva z fady SYTO [8, 34]. Navic
antibiotika pasobici svym ti¢inkem na bunécnou sténu
vyvolavaji zmeény i v morfologii cilovych bunék, coz by-
lo vyuzito pfi priikazu methicillin-rezistentnich kment
S. aureus [33, 37]. Metoda pritokové cytometrie byla pouzita
i pro detekci ESBL (extended-spectrum b-lactamases, re-
spektive Sirokospektrych beta-laktamaz). Kromé inkubace
s beta-laktamovymi antibiotiky byly bunécné izolaty inku-
bovany jak v pfitomnosti, tak i v nepfitomnosti kyseliny
Kklavulanové. Depolarizace bunécné membrany detekovana
prostiednictvim fluorescen¢niho barviva DiBAC,(3) identi-
fikovala vSechny izolaty citlivé k beta-laktamovym antibio-
tikiim, u producentd ESBL pouze ty, které byly inkubovany
kromé beta-laktam i s kyselinou klavulanovou [15].

V ptipadé sporulujicich bakterii priitokova cytometrie mize
prispét k urceni fyziologického stavu jednotlivych spor a rtiz-
norodosti bakterialni populace ve vzorku z hlediska sledo-
vani kli¢ivosti a pocetniho nartistu bakteridlnich spor [10].

BIOTECHNOLOGIE A POTRAVINARSTVI

Priitokova cytometrie se stala cennym nastrojem i pro stu-
dium vodnich organismt a mikrobidlniho ekologického
vyzkumu plidy a pfirodnich vodnich biotopti. Kombinace
parametrti stanovujicich pocet, velikost a dalsi biochemické
a fyziologické vlastnosti jednotlivych bunék umozriuje 1épe
definovat heterogenitu studované populace nebo komunity
117, 40, 41].

Rada aplikaci priitokové cytometrie se objevila i v oblasti
pramyslové biotechnologie, potravinafstvi a farmaceu-
tické kontroly kvality, rutinniho monitorovani pitné vody
a odpadnich systém [32]. Zejména pfi vyrobé potravin je
nezbytné sledovat a kontrolovat bakteridlni kontaminaci
v raznych stupnich vyrobniho procesu. Vyhodou priitokové
cytometrie je v tomto piipadé ¢asova ispora [7, 22]. Metodu
pritokové cytometrie Ize vyuzit i k pfimému sledovani ristu
bakterii pti vyrobé Cistych fermentacnich kultur. Jedna se
zejména o Cisté mlékarenské kultury, které se podileji na
vyrobé zakysanych mléénych vyrobkil. Bunécna viabilita
je také kliCovym analytickym parametrem v pivovarstvi
lihovarstvi a pfi vyrobé mosta [18].

ZAVER

Priitokova cytometrie je v soucasné dobé povaZovana za
standardni metodu analyzy ¢astic v suspenzi. 1 kdyZ je tato



technika vyuZzivana pfedev§im ke studiu eukaryotickych
buneék, stale Sirsi uplatnéni nachazi i v oblasti mikrobio-
logie, kde predstavuje novy metodicky piistup odlisny od
dosud pouzivanych klasickych mikrobiologickych metod.
K vyhodam této metody patfi rychlost méfeni a mozZnost
vzajemné kombinace rizné druhy parametra v originalnim
vzorku (multiparametrova analyza), coz vede k lepSimu
poznani funkéni bunécné aktivity a detailnéjsimu rozliseni
heterogenity zkoumanych populaci. Vyuziti této metody
v mikrobiologii je zatim stile pomérné malé, Sirsi vyuZziti
nachazi prutokova cytometrie pfi rutinni analyze napft.
v potravinarstvi.

Nevyhodou je finan¢ni naro¢nost zejména piistrojového vy-
baveni, k obsluze cytometru je zapotiebi i specidlné Skoleny
personal. I pfesto lze pfedpokladat, Ze v blizké budoucnosti
dojde k jejimu roz§iteni i do dalsich oblasti mikrobiologie,
vCetné klinické laboratorni praxe.
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