
1792015, 64, č. 4       EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE

SOUHRNNÉ SDĚLENÍ

Úloha Streptococcus mutans v orálnom biofilme 
Legéňová K., Bujdáková H.

SOUHRN
Streptococcus mutans patrí medzi primárnych kolonizátorov 
ústnej dutiny. Vďaka vhodným virulenčným faktorom – 
produkcia glukánov, rezistencia voči kyselinám, prirodzená 
kompetencia a tvorba kompaktného biofilmu, má istú výhodu 
oproti iným primárnym kolonizátorom. Je považovaný za 
hlavný etiologický agens zubného kazu. V  súčasnosti je 
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zubný kaz považovaný za fenomén súvisiaci s metabolickou 
aktivitou baktérií v orálnom biofilme a má významný nielen 
zdravotný, ale aj socioekonomický dopad.
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ABSTRACT
Legéňová K., Bujdáková H.: The role of Streptococcus 
mutans in the oral biofilm 
Streptococcus mutans is one of the primary colonizers of the 
oral cavity. Carriage of the appropriate virulence factors - 
production of glucans, acid resistance, natural competence, 
and ability to form compact biofilm, confers a certain advan-
tage to S. mutans over other primary colonizers. It is believed 

to be the main etiological agent of dental caries. Currently, 
dental caries seems to be a phenomenon related to the meta
bolic activity of bacteria in the oral biofilm with an impact 
not only on health but also on socio-economic outcome. 
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VŠEOBECNÁ CHARAKTERISTIKA 
ORÁLNEHO BIOFILMU
Človek je počas svojho života kolonizovaný rôznymi 
mikroorganizmami [1], ktoré významne ovplyvňujú jeho 
fyziologický status [2, 3]. Ústna dutina predstavuje vhod-
né prostredie pre rast mikroorganizmov vďaka vlhkosti, 
optimálnej teplote (35–36 °C), vhodnému pH (6,75–7,25) 
a dostatočnému prísunu živín [4, 5]. Orálne mikroorga-
nizmy tvoria v  ústnej dutine (zubná sklovina, ďasná, 
jazyk) plak odborne nazývaný aj orálny biofilm [6]. Je 
to funkčne a  štrukturálne organizované spoločenstvo 
mikroorganizmov, obklopené extracelulárnym matrixom 
zloženým z exopolymérov a DNA, ktoré je prirodzenou 
súčasťou ústnej dutiny u zdravých jedincov, pričom po-
skytuje hostiteľovi výhody (ochrana pred patogénnymi 
mikroorganizmami) [7, 8, 9, 10]. Ak dôjde k narušeniu 
prirodzenej homeostázy medzi hostiteľom a  mikroor-
ganizmami, objavujú sa infekcie, ktoré môžu spôsobiť 
až zubný kaz či parodontitídu [11]. Vo všeobecnosti je 
tvorba biofilmu pre mikroorganizmy výhodná z hľadiska 
ich prežitia. Matrix, ktorý ich obklopuje, im poskytuje 
ochranu voči toxickým látkam, UV žiareniu, antimik-
robiálnym látkam, mechanickému poškodeniu alebo 
bakteriofágom, či imunitnej odpovedi hostiteľa [12]. 
Formovanie biofilmu prebieha v šiestich základných štá-
diách – prvou fázou je prisadnutie planktonických buniek 
na biotický alebo abiotický povrch pomocou adhezínov. 
Tento proces je reverzibilný. Prichytené bunky sa množia 

a produkujú makromolekuly, čím k sebe navzájom priľnú 
a vytvoria sa tak mikrokolónie. Rastom mikrokolónií do-
chádza k vylučovaniu polysacharidov, proteínov, lipidov 
a uvoľňovaniu DNA. Tvorí sa tak matrix obaľujúci bunky 
a biofilm dozrieva – maturuje. Vplyvom rôznych faktorov 
dochádza k heterogénnemu usporiadaniu buniek a mo-
lekúl v biofilme a k vzniku kanálov a dutiniek. Tie slúžia 
na prísun živín do hlbších štruktúr biofilmu. V prípade 
nepriaznivých podmienok (napr. vyčerpanie živín, nedo-
statok miesta) sa z biofilmu uvoľňujú disperzné bunky, 
ktoré pri vhodných podmienkach adherujú a vytvárajú 
nový biofilm, na inom mieste (obr. 1) [13, 14, 15].

Obr. 1. Schéma formovania biofilmu � [Legéňová, 2015]

Fig. 1. Schematic representation of biofilm formation 
� [Legéňová, 2015]
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Ústna dutina, rovnako ako iné biotopy v tele človeka, je 
kolonizovaná charakteristickou a komplexnou mikrofló-
rou, ktorá je zložená z prvokov, kvasiniek, mykoplaziem, 
Archaea a eubaktérií. Iba asi polovica z týchto mikroorga-
nizmov je kultivovateľná. Pomocou rôznych postupov, 
nezávislých od kultivácie, sa doposiaľ podarilo identifi-
kovať 1 200 taxónov. Pritom v ústnej dutine jednotlivca 
je možné identifikovať len približne 100 druhov z tohto 
počtu [16, 17, 18]. Zloženie ústnej mikroflóry sa mení 
v závislosti od povrchu, napríklad na mukóznom povrchu 
sliznice je veľmi nízke zastúpenie mikroorganizmov. 
Dôvodom je neustále odlupovanie sa vrchnej časti buniek, 
tzv. deskvamácia. Naproti tomu je na zubnom povrchu 
najvyššie zastúpenie mikrobiálnej biomasy v rámci ústnej 
dutiny. V zárezoch žuvacích plôch molárov sa vyskytujú 
najmä aeróbne a fakultatívne anaeróbne, sacharolytic-
ké, Gram-pozitívne baktérie, prevažne streptokoky a len 
veľmi nízky počet anaeróbnych alebo Gram-negatívnych 
baktérií. V gingiválnom vačku sú v prevahe proteolytické, 
obligátne anaeróbne Gram-negatívne baktérie. Sliny 
obsahujú 108 mikroorganizmov/ml, ktoré pochádzajú 
z rôznych častí ústnej dutiny, najmä jazyka [19]. Orálna 
mikroflóra je pre hostiteľa prirodzená a v čase relatívne 
nemenná. Narušením homeostázy dochádza k vzniku 
infekčných ochorení. Pomnožením acidorezistentných 
a acidotolerantných druhov baktérií, ako sú streptoko-
ky, laktobacily alebo bifidobaktérie, dochádza k tvorbe 
zubného kazu. Na prepuknutí parodontitídy sa podie-
ľajú proteolytické baktérie, ako sú obligátne anaeróbne 
Gram-negatívne druhy z  rodov Prevotella, Porphyromonas, 
Fusobacterium, Treponema, Tannerella a niektoré nekultivo-
vateľné druhy, vyvolávajúce zápal [11, 19].
Pri vývoji orálneho biofilmu zohrávajú dôležitú úlohu 
molekuly bakteriálneho pôvodu (lipoteichoové kyseli-
ny, extracelulárne polysacharidy syntetizované gluko-
zyltransferázami a fruktozyltransferázami) a molekuly 
pochádzajúce zo slín hostiteľa (proteíny bohaté na prolín, 
amylázu, histatín, lyzozým, peroxidázu, mucín), ktoré 
tvoria film označovaný ako pelikula. Na pelikulu sa spo-
čiatku reverzibilne viažu kolonizujúce mikroorganizmy 
cez slabé fyzikálno-chemické väzby medzi nabitými che-
mickými skupinami v povrchových štruktúrach mikroor-
ganizmov. Táto väzba sa môže stať permanentnou pro-
stredníctvom interakcií medzi bakteriálnymi adhezínmi 
a komplementárnymi väzobnými miestami na pelikule. 
Prvotnými kolonizátormi ústnej dutiny sú najmä strepto-
koky (tvoria až 80 % z celkového počtu mikroorganizmov, 
ktoré sa podieľajú na prvotnej kolonizácii ústnej dutiny), 
v menšej miere baktérie rodu Actinomyces, Capnocytophaga, 
Eikenella, Haemophilus, Prevotella, Propionibacterium a Veillonella. 
Ich hlavnou úlohou pri formovaní biofilmu je produkcia 
rôznych typov adhezínov (antigén I/II, PaG, SspA, amylá-
zu viažúce proteíny a iné), ktoré slúžia na naviazanie sa 
na väzobné miesta na pelikule hostiteľa a ako receptory 
pre naviazanie sa sekundárnych kolonizátorov (koadhé-
zia), čím sa zvyšuje rozmanitosť a formuje sa viacdruho-
vý biofilm [20]. Prisadnuté baktérie syntetizujú rôzne 
extracelulárne polyméry a  formujú matrix biofilmu, 
ktorý je, vďaka svojej schopnosti viazať a zachovávať si 
rôzne molekuly (napr. enzýmy), biologicky veľmi aktívny 
[21, 22, 23].
V ústnej dutine sa rozlišujú dva typy biofilmu, ktoré sa 
líšia miestom výskytu (subgingiválny a supragingivál-
ny) a mikrobiálnym zložením. Supragingiválny plak 

je zložený z aktinomycét, streptokokov, laktobacilov 
a kandíd, ktoré vytvárajú prvú vrstvu. Počas maturácie 
biofilmu dochádza k agregácii a rastu iných druhov bak-
térií, pričom po siedmych dňoch dochádza k zníženiu 
počtu streptokokov a zvýšeniu počtu baktérií Fusobacterium 
nucleatum. Po troch týždňoch sa supragingiválny plak 
začína morfologicky podobať subgingiválnemu plaku. 
Ten sa skladá zo štyroch vrstiev, pričom prvú vrstvu 
tvoria bunky aktinomycét. V druhej vrstve subgingivál-
neho plaku sú prítomné baktérie vretenovitého tvaru 
– F. nucleatum a Tannerella sp. Tretia a štvrtá vrstva biofilmu 
pozostáva najmä z klastrov baktérií z taxónov Cytophaga- 
-Flavobacterium-Bacteroides a Tannerella, Prevotella a Bacteroidetes 
[11, 24, 25].
Komunikácia medzi jednotlivým druhmi mikroorganiz-
mov v  orálnom biofilme je sprostredkovaná pomocou 
quorum sensing (QS) mechanizmu. Týmto termínom 
sa označuje schopnosť mikroorganizmov v biofilme vy-
lučovať a detegovať molekuly autoinduktorov, ktoré sa 
v biofilme hromadia v priamej závislosti od zvyšujúcej sa 
hustoty buniek [20, 21, 24, 25]. Ak hladina autoindukto-
rov dosiahne tzv. prahovú hodnotu („threshold level“), 
aktivujú sa receptory, ktoré pomocou kaskády prenosu 
signálu zapnú gény, ktoré sú v bakteriálnych bunkách 
zodpovedné za koordináciu mikrobiálnej populácie [26]. 
QS mechanizmus je zodpovedný za riadenie takých pro-
cesov v biofilme, ako je adherencia buniek na povrchy, 
tvorba spór, kompetencia buniek, bioluminiscencia ale-
bo expresia virulenčných faktorov. Ide o vysoko špecifický 
a presný proces riadenia [27, 28]. Autoinduktory sú malé 
molekuly, ktoré sú buď schopné voľne prechádzať cez 
bunkové membrány, alebo sú aktívne transportované 
z  buniek pomocou ABC transportérov, prípadne väz-
bou na membránovo-viazanú senzor-kinázu. Niektoré 
autoinduktory sú do buniek transportované pomocou 
oligopeptidových permeáz, ktoré následne interagujú 
s intracelulárnymi receptormi [29, 30].
Pri Gram-pozitívnych baktériách pozostávajú QS systé-
my z troch zložiek – signálneho peptidu a dvojzložkové-
ho regulačného systému TCSTC (Two-Component Signal 
Transduction System). TCSTC je zložený z membránovo 
viazanej histidín-kinázy (HK) a  regulátora zodpoved-
ného za medzibunkovú odpoveď (RR – Intracellular 
Response Regulator) [31]. Pri S. mutans je QS mechaniz-
mom regulovaná ich schopnosť prirodzene prijímať 
cudzorodú DNA – prirodzená kompetencia, regulácia 
tolerancie na prítomnosť kyslých produktov v prostre-
dí (ATR – Acid Tolerance Response) a schopnosť tvoriť 
biofilm [32]. Za spustenie génovej kompetencie sú pri 
S. mutans zodpovedné produkty aspoň piatich génov 
– comAB a comCDE. Gény comC, comD a comE kódujú pre-
kurzory pre kompetenciu stimulujúci peptid (CSP – 
Competence Stimulating Peptid) – HK a RR [33]. Tieto 
gény sú kódované na chromozóme tesne vedľa seba, 
zatiaľ čo ostatné dva gény comA a comB sú lokalizované 
na inej časti chromozómu a  kódujú ABC transportér 
(comA) a prídavný proteín (comB), ktoré sú zodpovedné 
za sekréciu CSP [34]. Zistilo sa, že okrem týchto piatich 
génov ovplyvňuje kompetenciu S. mutans aj gén comX. 
Je homológom alternatívneho sigma faktora, ktorý bol 
nájdený pri Streptococcus pneumoniae a riadi transkripciu 
RNA polymeráz, ktoré sa podieľajú na prepise génov ria-
diacich kompetenciu [35]. Bolo zistené, že rovnaké gény, 
ktoré sa podieľajú na prirodzenej kompetencii S. mutans 

proLékaře.cz | 2.2.2026



1812015, 64, č. 4       EPIDEMIOLOGIE, MIKROBIOLOGIE, IMUNOLOGIE

SOUHRNNÉ SDĚLENÍ

(comCDE) ovplyvňujú aj tvorbu biofilmu a ATR, pričom 
ich expresia závisí od hustoty buniek v prostredí [36, 37].

PODIEL STREPTOKOKOV  
NA VZNIKU ZUBNÉHO KAZU
Zubný kaz je stav, kedy dochádza k poškodeniu sklovi-
ny, prípadne aj zuboviny. Je to jeden z najčastejšie sa 
vyskytujúcich problémov súčasnej medicíny, ktorý má 
aj významný socio-ekonomický dopad. Hoci sa vyskyto-
val už v staroveku, považuje sa za medicínsky problém 
modernej doby. V Európe bol masovo rozšírený v 19. sto-
ročí. Pokles nastal v 40.–60. rokoch 20. storočia, kedy sa 
v Európe začalo s fluorizáciou vody a v neskoršom období 
aj zubných pást [38, 39, 40]. Zubný kaz vzniká v dôsledku 
premeny cukrov, prijímaných v potrave, na kyseliny, 
ktoré rozrušujú zubnú sklovinu a dentín. K tejto premene 
dochádza pôsobením baktérií orálneho biofilmu. Zistilo 
sa, že proces rozrušovania zubnej skloviny a dentínu 
nie je kontinuálny, ale cyklický. Fáza demineralizá-
cie sa strieda s  fázou remineralizácie zubnej skloviny, 
pričom k vytvoreniu zubného kazu dôjde len v prípade 
masívnejšej demineralizácie. K remineralizácii skloviny 
a dentínu prispievajú najmä sliny, obsahujúce vápnik 
a čistenie zubov zubnými pastami obsahujúcimi fluorid 
[40]. Dôležitou súčasťou prevencie vzniku zubného kazu 
je správna životospráva. Výsledky dvoch experimentov 
[41,42] na potkanoch dokázali, že na vzniku zubného kazu 
sa podieľa prirodzená ústna mikroflóra ako aj prítomnosť 
cukrov v ústnej dutine, prijímaných v potrave. Dôležitým 
zistením [43] bol aj fakt, že k narušeniu zubnej skloviny 
dochádza pri poklese pH pod 5,5. V tejto štúdii sa zistilo, 
že pH v ústnej dutine rýchlo klesá z pH 7 na pH 5,5 a nižšie 
po prijatí cukrov, pričom čas potrebný na jeho úpravu na 
pôvodnú hodnotu je 40 minút. Za nárast pH na pôvodnú 
hodnotu sú zodpovedné sliny, ktoré neutralizujú kyseliny 
a odmývajú zvyšky potravy zo zubného povrchu a slizníc. 
Okrem týchto experimentov bolo vykonaných niekoľ-
ko ďalších [44, 45], ktoré zhodne potvrdili kariogénny 
(podieľajúci sa na vzniku zubného kazu) účinok cukrov 
(sacharózy, maltózy, fruktózy a glukózy). Zo spomenu-
tých prác tiež vyplýva, že na vznik zubného kazu má 
vplyv množstvo a frekvencia prijímania cukrov v potrave, 
pričom tento vzťah je priamo úmerný závažnosti rozvoja 
zubného kazu. Je potrebné rozlišovať zdroje prijímaných 
sacharidov, keďže niektoré potraviny ich obsahujú priro-
dzene – mlieko (laktóza), ovocie, zelenina. Zistilo sa, že 
z celkovej dennej dávky prijatých cukrov (118 g) dve tretiny 
pochádzajú z potravín s umelo dodávaným cukrom, naj-
mä sladkých nealkoholických nápojov [46].
Vyvinutých bolo niekoľko stratégií prevencie zubného 
kazu založených či už na obrane hostiteľa, alebo oslabení 
patogéna. Do prvej skupiny patria:
1. 	zníženie rozpustnosti zubnej skloviny pôsobením 

kyselín,
2. 	zvýšenie schopnosti remineralizácie,
3. 	pokrytie zubnej skloviny látkou, ktorá by vytvárala 

ochranu pred prichytávaním sa biofilmu. Druhá sku-
pina zahŕňa:
•  mechanické odstránenie zubného biofilmu,
•  zmenu genetickej výbavy baktérií tak, aby sa zní-

žila ich schopnosť metabolizovať cukry na kyslé 
produkty a 

•  zníženie príjmu cukrov v potrave [47, 48].

Najbežnejším spoločenským návykom prevencie zub-
ného plaku a vzniku zubného kazu je umývanie zubov. 
V prípade vhodnej techniky je tento spôsob odstraňova-
nia orálneho biofilmu dostatočne efektívny, pričom na 
znížení vzniku zubného kazu sa vo veľkej miere podieľa 
práve fluorid prítomný v zubných pastách [49].
Petersen et al. [50] zistili, že výskyt zubného kazu rastie 
aj s pribúdajúcim vekom, pričom ľudia vo veku 65 rokov 
majú 22 zubov (z  32) pokazených, s  výplňou alebo im 
chýbajú. Ošetrenie zubného kazu je pomerne finančne 
nákladné, čím sa stáva nedostupným najmä pre znevý-
hodnené a chudobné obyvateľstvo (výdavky na ošetrenie 
zubného kazu v  roku 2011 v  rámci 27 členských štátov 
Európskej únie dosiahli 79 biliónov €) [48].
Nedostatočná ústna hygiena môže viesť k tvorbe zubného 
kazu a  jeho zanedbanie môže mať výrazne negatívny 
vplyv na kvalitu života. Dôsledky spojené so zanedbaním 
ošetrenia zubného kazu majú výrazný vplyv najmä na 
deti a adolescentov [51, 52]. Neošetrenie zubného kazu 
spôsobuje mierne až silné bolesti, zubné sepsy [53, 54], 
ťažkosti pri žuvaní; sekundárnymi problémami potom 
môžu byť ťažkosti s  učením (nesústredenosť) [55], po-
ruchy spánku a chovania[56], znížený príjem potravy, 
čo vedie k strate hmotnosti a podvýžive, čím sa celkovo 
naruší obranyschopnosť organizmu [57]. 
Zástupcovia rodu Streptococcus sú súčasťou prirodzenej 
ľudskej mikroflóry a najčastejšie sú izolovaní z ústnej du-
tiny, gastrointestinálneho a urogenitálneho traktu [58]. 
Skupina mutans streptokokov zahŕňa druhy – S. mutans, 
S. sobrinus, S. ratti, S. criceti, S. downei a S. ferus [59, 60, 61] a je 
vo všeobecnosti považovaná za významného pôvodcu 
zubného kazu.
V súčasnosti rod Streptococcus zahŕňa 99 druhov. Väčšina 
z týchto druhov je asociovaná z ochoreniami ľudí a zvierat 
[62]. Viridujúce streptokoky sa radia do štyroch fyloge-
netických klastrov – mitis, mutans, salivarius a angi-
nosus. Zriedkavo môžu tieto mikroorganizmy vyvolať 
aj bakterémie, abscesy a  infekčné endokarditídy [63, 
64, 65, 66]. Mnohé kmene z tejto skupiny sú prirodzene 
geneticky kompetentné. Táto schopnosť horizontálne-
ho génového prenosu im poskytuje selektívnu výhodu 
nad inými mikroorganizmami vďaka lepšej adaptácii 
na prostredie hostiteľa a vyhýbaniu sa jeho imunitnej 
odpovedi [67, 68]. Táto genetická diverzita zabezpečuje 
rôznorodosť jednotlivých izolátov. Streptococcus mutans 
je Gram-pozitívna, fakultatívne anaeróbna baktéria, 
ktorá sa vo voľnej prírode nevyskytuje a jej prirodzeným 
biotopom je ústna dutina. Patrí medzi prvých kolonizá-
torov na zubnom povrchu. V súčasnosti je považovaná 
za hlavný etiologický agens zubného kazu [69, 70]. Jej 
izolácia z ústnej dutiny u zdravých jedincov naznačuje, 
že prostredie v ústnej dutine zohráva dôležitú úlohu pri 
aktivácii faktorov virulencie tohto mikroorganizmu. 
Nadmerným rozmnožovaním S. mutans dochádza k zmene 
environmentálnych podmienok v ústnej dutine – klesá 
pH v dôsledku schopnosti premieňať cukry (sacharóza, 
škrob, glukóza) prijaté v strave na kyslé produkty, čo mu 
v konečnom dôsledku umožňuje lepšie prichytenie sa na 
povrch zubnej skloviny prostredníctvom extracelulárnych 
polysacharidov (EPS) – glukánov. Poklesom pH dochádza 
k demineralizácii zubnej skloviny, čo môže viesť k vzniku 
zubného kazu [71, 72]. Glukány sú syntetizované rôzny-
mi povrchovo viazanými glukozyltransferázami (GTF)  
a tvoria hlavnú zložku orálneho biofilmu. Pri S. mutans 
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boli doposiaľ identifikované tri typy glukozyltransfe-
rázových enzýmov (glukozyltransferáza typu B, C a D), 
z ktorých každý sa podieľa na syntéze štrukturálne odliš-
ného typu glukánov [69]. GtfB (oficiálne GtfI) primárne 
syntetizuje nerozpustný glukán bohatý na α-1,3-glyko-
zidové väzby. Tento typ glukánu slúži na naviazanie 
S.  mutans na iné mikroorganizmy v  orálnom biofilme 
(Candida albicans, Lactobacillus casei, Actinomyces viscosus) a je 
zodpovedný za tvorbu štrukturálne pevného a kohézne-
ho matrixu biofilmu. Enzým je kódovaný génom gtfB, 
s veľkosťou 4,4 kbp a je súčasťou gtfBC operónu (obr. 2) 
[73, 74, 75]. Súčasťou tohto lokusu je aj gén gtfC, kódujúci 
glukozyltransferázu typu C (GtfSI), ktorého veľkosť je 4,3 
kbp. GtfC syntetizuje zmes rozpustného (α-1,6-glykozi-
dová väzba) a nerozpustného glukánu (α-1,3-glykozidová 
väzba), ktorých úlohou je väzba S. mutans na orálne po-
vrchy pri kolonizácii [76]. Enzýmy gtfB a gtfC sú vysoko 
homologické (75 % identita aminokyselín) a ako už bolo 
spomínané, tvoria súčasť gtfBC operónu. Gény, ktoré ich 
kódujú sú od seba vzdialené 198 bp a predpokladá sa, že 
sú prepisované oproti sebe a môžu podliehať rovnaké-
mu regulačnému mechanizmu. Stále ostáva otázne, 
či zdieľajú spoločný promótor, alebo ide o dva osobitné 
promótory, ktoré sú koordinovane exprimované [69]. 
Gén gtfD (obr. 2) je lokalizovaný pred lokusom gtfBC a je 
regulovaný vlastným promótorom [77]. Gény kódujúce 
glukozyltransferázy B a C sú exprimované pri acidifikácii 
alebo pri nadbytku glukózy a sacharózy v prostredí [78, 
79]. Transkripcia a  translácia génu gtfD je zvýšená za 
prítomnosti iónov medi v prostredí [80]. Každý z GTF en-
zýmov má na amino-terminálnom konci signálny peptid 
zložený z približne 38 aminokyselín. Tento signálny pep-
tid susedí s vysoko variabilnou doménou pozostávajúcou 
asi z 20 aminokyselín, ktoré sú charakteristické pre kon-
krétny enzým [81]. Na C terminálnom konci je prítomná 
sekvencia pozostávajúca zo série opakujúcich sa motívov 
aminokyselín. Táto sekvencia je odlišná pre GtfB a GtfC, 
čo môže čiastočne vysvetľovať preferencie v adsorbovaní 
enzýmov na orálne (GtfC) alebo mikrobiálne povrchy 
(GtfB). Enzýmy GtfB a GtfD majú podobnú hydrofilnú 
štruktúru. Enzým GtfC je taktiež hydrofilný, avšak na C 
terminálnom konci má hydrofóbnu doménu. Tá môže 
byť spojená s aktivitou enzýmu na orálnych povrchoch. 
Predpokladá sa, že táto aktivita je sprostredkovaná cez 
interakcie so špecifickými makromolekulami prítom-
nými v slinách, ako sú lyzozým a α-amyláza [69, 82]. Na 
expresiu génov kódujúcich glukozyltransferázy majú 
vplyv rôzne pozitívne a negatívne regulátory. Medzi ni-
mi aj regulátor katabolickej expresie RegM, Clp systém 
zodpovedný za toleranciu na stres alebo dvojzložkové 
systémy VicRK a CovR, ktoré sú zodpovedné za riadenie 
virulencie pri S. mutans [82, 83]. RegM proteín reguluje 
katabolickú expresiu pri S. mutans a Staphylococcus sp. Jeho 
regulačná funkcia je založená na inhibícii génov, ktoré 
participujú na využití alternatívnych zdrojov uhlíka a na 
aktivácii expresie génov, ktorých produkty sa podieľajú 
na odstránení nadbytku uhlíka z  buniek. Inaktivácia 
proteínu RegM má za následok nadmerný pokles expre-
sie gtfBC promótora [84]. Pre organizmy, ktoré musia 
konštantne odolávať rôznym zmenám vonkajšieho pro-
stredia, je dôležité udržanie bunkovej homeostázy. Na 
tomto procese sa podieľajú proteázy a s nimi asociované 
chaperóny. Ich úlohou je degradácia a recyklácia skráte-
ných, poškodených alebo inak nefunkčných proteínov. 

Okrem toho systém proteáz priamo reguluje fyziologický 
stav buniek kontrolou hladiny špecifických proteínov, 
ktoré sa podieľajú na základných bunkových procesoch 
ako transkripcia, replikácia DNA alebo delenie buniek 
[85, 86]. Clp proteolytický systém je jedným z hlavných 
mechanizmov, ktorý sa na tejto rovnováhe podieľa. Ide 
o dvojzložkový systém zložený z ATPázovej a proteolytic-
kej domény, ktoré sú kódované na dvoch samostatných 
peptidoch. Clp proteolytický (obr. 3) systém pri S. mutans 
pozostáva z  ClpP proteolytickej podjednotky, ktorá je 
asociovaná z  jednou z  troch ATPáz (ClpC, ClpE, ClpX) 
[87, 88]. S. mutans kóduje okrem vyššie spomínaných aj 
ClpB a ClpL ATPázy, avšak tieto netvoria komplex s pro-
teolytickou podjednotkou ale plnia úlohu samostatných 
chaperónov [87, 89]. Kmene s deléciou clpP génu vykazujú 
oslabený rast v  stresových podmienkach, majú silnú 
tendenciu agregovať, zníženú účinnosť transformácie 
a  nie sú schopné tvoriť biofilm v  prostredí s  glukózou 
ako primárnym zdrojom uhlíka [88]. Okrem toho bola 
pri  týchto mutantoch pozorovaná zvýšená citlivosť na 
dezinfekčné látky využívané v  ústnej hygiene, ako je 
chlórhexidín, peroxid vodíka alebo fluorid sodný [90, 
91]. Dvojzložkové systémy VicRK (Virulence Control) 
a CovR (Control of Virulence) navzájom regulujú gény 
zodpovedné za syntézu a interakciu s extracelulárnymi 
polysacharidmi (gtfB, gtfC, gtfD, gbpB, gbpC) [92, 93, 94] 
a gény, ktoré sa podieľajú na biogenéze bunkovej steny, 
pričom sú špecificky aktivované práve počas rastu vo fáze 

Obr. 2. Mapa usporiadania génov gtf pri S. mutans 
Upravené podľa Hoshino et al. 2012 [125]

Figure 2. Map of the architecture of gtf  genes in S. mutans 
Adapted from Hoshino et al., 2012 [125]

Obr. 3. Mapa usporiadania génov clp pri S. mutans 
Upravené podľa Lemos a Burne, 2002 [88]

Figure 2. Map of the architecture of clp genes in S. mutans 
Adapted from Lemos and Burne, 2002 [88]
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biofilmu. Transkripčný regulátor VicRK je pozitívnym 
regulátorom týchto génov [94, 95], zatiaľ čo CovR ich po-
tláča [96]. Deleční mutanti ΔcovR vykazujú abnormálnu 
štruktúru biofilmu, zvýšenú agregáciu buniek a nižšiu 
schopnosť kariogenicity [97]. Mutantné kmene v  géne 
vicK prejavujú poruchy pri delení buniek a  formovaní 
biofilmu v prostredí so sacharózou [98].
Ústny biofilm je okrem glukánov (10–20 % sušiny) zložený 
z fruktánov (1–2 %), proteínov (40 %), rôzneho množstva 
lipidov, vápnika, fosfóru, horčíka, fluóru a  približne 
80 % vody [99, 100].

SYNTÉZA EXOPOLYSACHARIDOV IN SITU 
– TVORBA MATRIXU ÚSTNEHO BIOFILMU
Vývoj matrixu ústneho biofilmu bol preskúmaný pomo-
cou fluorescenčných prób počas syntézy GTF exopolysa-
charidov [74, 79, 101]. Ten pozostáva z niekoľkých krokov 
(obr. 4). Najskôr sú na povrchoch primárnych kolonizáto-
rov formované počiatočné glukány, ktorými sa baktérie 
zachytávajú na orálnych povrchoch. Tak dochádza k pr-

votnej mikrobiálnej kolonizácii a formovaniu bunkových 
zhlukov. V druhom kroku vedie nepretržitá produkcia 
glukánov in situ k zväčšovaniu trojdimenzionálneho mat-
rixu biofilmu, pričom sa formuje jadro tvorené bakteri-
álnymi bunkami a exopolysacharidmi, ktoré slúži ako 
nosná konštrukcia pri tvorbe mikrokolónií. V treťom kro-
ku biofilm dozrieva, dochádza k ohraničovaniu jednotli-
vých mikrokolónií glukánmi, čím sa formujú agregáty 
zložené z viacerých mikrokolónií [101]. Bolo zistené, že  
S. mutans v rámci viacdruhového biofilmu zvyšuje expresiu 
génov, ktoré súvisia so syntézou glukánov (gtfB, gtfC), 
remodelingom týchto enzýmov (dexA) a ich väzbou (gbpB) 
[102]. Skúmaním dvojitých mutantov S. mutans v génoch 
gtfB a gtfC sa zistilo, že tieto nedokážu formovať biofilm 
bohatý na glukány, a tým nedochádza k tvorbe komplexu 
glukány-mikrokolónie. Tým sa preukázala kľúčová úloha 
týchto génov pri formovaní orálneho biofilmu baktériou 
S. mutans [101]. Keďže zubný kaz vzniká v dôsledku rozru-
šovania zubnej skloviny kyslými produktmi primárnych 
kolonizátorov, pomocou fluorescenčného pH indikátora 
inkorporovaného do matrixu biofilmu, bolo merané pH 

Obr. 4. In situ syntéza exopolysacharidov a formovanie matrixu  kariogénneho biofilmu 
� Upravené podľa Koo et al., 2013 [82]
Figure 4. In situ synthesis of exopolysaccharides and matrix formation of cariogenic biofilm 
� Adapted from Koo et al., 2013 [82]
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na rôznych miestach orálneho biofilmu. Zistila sa znač-
ná variabilita, ktorá môže byť zapríčinená fyzikálnymi 
faktormi (rozkladanie rozpustných glukánov a  fruktá-
nov enzýmami prítomnými v  matrixe) alebo faktormi 
metabolickými (rozdielna metabolická aktivita S. mutans 
v rámci biofilmu) [69, 103]. Nízke pH bolo zaznamena-
né vo vnútri komplexov EPS-mikrokolónie a  na povr-
choch zubov v mieste, kde sa mikrokolónie prichytávajú. 
Okrem klinického významu nízkeho pH (rozrušovanie 
zubnej skloviny) dochádza vďaka zníženiu pH taktiež 
k formovaniu kompaktnejšieho matrixu biofilmu, keďže 
znížením pH v prostredí dochádza pri S. mutans k zvýšenej 
tvorbe glukánov [69, 78]. Na inhibíciu glukozyltransferáz 
bolo už v  minulosti [104] vyskúšaných mnoho chemic-
kých zlúčenín, ako sú kvartérne amóniové zlúčeniny, 
alifatické amíny alebo protilátky. Okrem chemických 
zlúčenín, boli vyskúšané aj rôzne prírodné látky (zelený 
čaj, extrakty z rastlín) [105, 106, 107], niektoré ióny (Fe2+, 
Zn2+, Cu2+) [108], oxidačné činidlá (chlórňany, bengálska 
ružová), prípadne biocídy (triclosan cetylpyridínium 
chlorid) [108]. Ich inhibičná aktivita však bola oveľa 
vyššia proti voľným enzýmom v roztokoch, ako naviaza-
ným na hydroxyapatitové povrchy. Zatiaľ najúčinnejším 
inhibítorom GTF enzýmov sa zdá byť extrakt propolisu, 
ktorý bol účinný proti GtfB a GtfC enzýmom v roztoku, 
ako aj naviazaným na povrchoch. Presný mechanizmus 
účinku zatiaľ nie je známy, ale zistilo sa, že na inhibíciu 
aktivity GTF enzýmov má vplyv štruktúra flavonoidov, 
ktoré sú hlavnou zložkou propolisu s inhibičným vplyvom 
na tieto enzýmy. Ako najúčinnejší inhibítor sa preukázal 
apigenín (4',5,7-trihydroxyflavón). Predpokladá sa, že 
jeho aktivita súvisí s  dvojitou väzbu medzi C-2 a  C-3, 
ktorá nie je prítomná pri iných flavonoidoch s nižšou, 
prípadne so žiadnou inhibičnou aktivitou. Predpokladá 
sa, že dochádza k naviazaniu aminokyselín vo vedľajších 
reťazcoch GTF enzýmov na túto dvojitú väzbu. Tieto 
aminokyselinové zvyšky sú potrebné na expresiu kata-
lytickej aktivity GTF enzýmov, čo pravdepodobne vedie 
k  inhibícii GTF enzýmov apigenínom [109]. Nedávno 
bola zaznamenaná úspešná inhibícia syntézy glukánov 
produkovaných naviazanými GtfB enzýmami pomocou 
špecifických oligomérov typu proantokyanidínov s  vy-
sokou molekulovou hmotnosťou, ktoré boli izolované 
z vodného extraktu brusníc. Presný mechanizmus účinku 
na GTF enzýmy nie je známy, zatiaľ sa vie, že ide o an-
ti-adhezívny účinok [110]. Už niekoľko rokov sa vedci 
zaoberajú myšlienkou vytvoriť vakcínu proti zubnému 
kazu s využitím glukozyltransferáz a ich fragmentov ako 
imunogénnych agens [111, 112, 113, 114]. Lokálna aplikácia 
slepačích protilátok bola účinná proti glukozyltransferá-
zam typu B, kedy došlo k radikálnemu zníženiu výskytu 
zubného kazu oproti kontrole u potkanov, avšak nebol 

pozorovaný účinok na rozpustné glukány syntetizované 
enzýmom GtfD [115]. 

INTRACELULÁRNE POLYSACHARIDY
Produkcia glukánov je dôležitým virulenčným faktorom 
S. mutans. Okrem vyššie spomínaných exopolysacharidov, 
produkujú tieto orálne baktérie aj intracelulárne polysa-
charidy (IPS – Itracellular Polysaccharides). Z hľadiska 
štruktúry sú IPS polyméry typu glykogén-amylopek-
tín s α-1,4- a α-1,6-glykozidovou väzbou. V bunkách sú 
akumulované v  podobe intracelulárnych granúl [116]. 
Na syntéze IPS sa pri S. mutans podieľajú najmenej 3 
enzýmy: glykogén syntáza, glukózo-1-fosfát pyrofosfo-
ryláza a  enzým podieľajúci sa na vetvení. Sekvenčná 
analýza genómu S. mutans naznačuje, že domnelé gény 
podieľajúce sa na syntéze IPS sú súčasťou glg operónu, 
ktorý pozostáva z  génov glgB-glgC-glgD-glgA-glgP (obr. 5) 
[117]. Podľa výsledkov prác s  inými Gram-pozitívnymi 
baktériami, gén glgA kóduje glykogén syntázu, glgB je 
zodpovedný za syntézu glukán vetviaceho enzýmu a gény 
glgC a glgD kódujú podjednotky glukóza-1-fosfát pyrofos
forylázy [118, 119]. IPS slúžia ako zdroj polysacharidov 
pre fermentačné procesy v  bunkách počas hladovania 
[120, 121]. Spatafora et al. [122] skonštruovali mutantov 
S. mutans schopných syntetizovať zvýšené množstvo IPS, 
ktoré boli hyperkariogénne po infikovaní gnotobiotic-
kých potkanov. Toto zistenie podporilo tvrdenia o IPS ako 
dôležitom virulenčnom faktore pre S. mutans. Proti smeru 
transkripcie glg operónu leží gén pul, ktorý kóduje enzým 
pullulanázu, ktorý je zodpovedný za hydrolýzu α-1,6 
väzieb v  rezervnom polysacharide pulluláne a  v  iných 
polysacharidoch [123]. Enzým kódovaný génom pul má 
na N-terminálnom konci domnelú pullulanázovú domé-
nu a na C-terminálnom konci alfa-amylázovú doménu 
[123, 124]. Preto okrem pullulánu môže hydrolyzovať 
amylopektín alebo glykogén [117].

ZÁVER
Ústna dutina vďaka vhodným podmienkam pre život 
rôznych druhov mikroorganizmov predstavuje husto 
kolonizovaný biotop. Na orálnych povrchoch vytvárajú 
kolonizujúce mikroorganizmy plak – orálny biofilm. Pre 
toto osídlenie sú najdôležitejší primárni kolonizátori, 
ktorý vďaka súboru virulenčných faktorov sú schopní 
prichytiť sa na orálnych povrchoch a  odolávať nepre-
tržitým zmenám prostredia (prúdenie slín, nárazový 
prísun živín). Dôležitým primárnym kolonizátorom je 
S. mutans, ktorý je v  súčasnosti považovaný za hlavný 
etiologický agens zubného kazu. Je to vďaka jeho priro-
dzenej kompetencii, odolnosti voči kyslým produktom 

Obr. 5. Mapa usporiadania génov pul a glg pri S. mutans UA159 
Upraveno podľa Busuioc et al., 2009 [117]

Figure 5. Map of the architecture of pul and glg genes in S. mutans UA159 
Adapted from Busuioc et al., 2009 [117]
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a schopnosti produkovať kompaktný matrix biofilmu, 
čím je v konkurenčnej výhode oproti iným primárnym 
kolonizátorom ústnej dutiny.
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