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ÚVOD
CDT toxíny patria do rodiny bakteriálnych toxínov produko-
vaných gramnegatívnymi baktériami. Sú to intracelulárne 
pôsobiace termolabilné proteíny, ktoré ovplyvňujú bunkový 
cyklus eukaryotických buniek. Prvé toxické účinky filtrá-
tov bujónových kultúr niektorých bakteriálnych kmeňov 
Escherichia coli, Shigella dysenteriae a  Campylobacter jejuni boli po-
zorované a  bližšie popísané autormi Johnsonom a  Liorom  
v  r. 1987 [1]. Prejavovali sa zväčšovaním jadier a  veľkosti 
buniek a viedli k predčasnému odumieraniu buniek. Na zá-
klade týchto účinkov bolo odvodené aj pomenovanie cytole-
tálny toxín [1, 2, 3].

VÝSKYT
Schopnosť produkovať CDT toxíny bola dokázaná u gramne-
gatívnych baktérií z čeľade Enterobacteriaceae, Pasteurellaceae, 
u  rodov Campylobacter a  Helicobacter. Producenti CDT patria 
k  patogénnej, ale aj komenzálnej mikroflóre, ktorá má 
primárnu afinitu k  mukokutánnym povrchom a  môžu sa 

uplatniť v  patogenéze lokalizovaných a  diseminovaných 
infekcií u rôznych cicavcov [4].
V čeľadi Enterobacteriaceae sa CDT toxíny vyskytujú u baktérií, 
ktoré sú zodpovedné za črevné infekcie a infekcie močových 
ciest s možnosťou systémového šírenia: E. coli, Shigella boydii 
sérotyp 13, Shigella dysenteriae a Salmonella enterica ssp. enterica 
sérotyp Typhi (S. Typhi). V rámci druhu E. coli sú nositeľmi 
CDT rôzne humánne a zvieracie patotypy [4, 5]. Zo spektra 
humánnych patotypov bola prítomnosť CDT potvrdená pri 
enteropatogénnych E. coli (EPEC) a enterotoxigénnych E. coli 
(ETEC), ktoré kolonizujú mukózu tenkého čreva a spôsobujú 
enterokolitídu, šigatoxín produkujúcich E. coli (STEC), ktoré 
sú príčinou hemolyticko-uremického syndrómu, extraintes-
tinálnych patogénnych E. coli (ExPEC) a nekrotoxických E. coli 
(NTEC), ktoré kolonizujú mukózu urogenitálneho traktu 
a spôsobujú infekcie močových ciest. Medzi zvieratami bola 
prítomnosť CDT potvrdená pri vtáčích patogénnych E. coli 
(APEC) a ExPEC izolovaných od kurčiat, pri NTEC izolovaných 
od dobytka a prasiat. Miestom kolonizácie všetkých týchto 
zvieracích patotypov bola mukóza tenkého čreva, ktorá 
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SÚHRN
Cytoletálne toxíny (cytolethal distending toxins; CDT) sú 
intracelulárne pôsobiace proteíny, ktoré zasahujú do bunko-
vého cyklu eukaryotických buniek. Sú produkované gram-
negatívnymi baktériami, ktoré majú afinitu k mukokutánnym 
povrchom a môžu sa uplatniť v patogenéze rôznych ochorení 
u cicavcov. Funkčný toxín sa skladá z troch proteínov: CdtB 
vstupuje do jadra a svojou nukleázovou aktivitou indukuje 
fragmentáciu jadra a  rozrušenie chromatínu, CdtA a CdtC 
sú zodpovedné za pripojenie toxínu k povrchu hostiteľskej 
bunky. Cytotoxický účinok CDT vedie k zastaveniu bunko-
vého cyklu predtým, ako bunka vstúpi do mitózy a k ďalším 
zmenám (rozšírenie bunky a smrť, apoptóza), ktoré závisia 
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od typu bunky. CDT tak môže pôsobiť ako faktor virulencie 
u patogénnych baktérií, ktoré ho produkujú a prispievať k ini-
ciácii niektorých ochorení. Zvlášť významné sú zápalové črev-
né ochorenia vyvolané črevnými baktériami, periodontitída, 
pri ktorej sa ako etiologický agens uplatňuje Aggregatibacter 
actinomycetemcomitans, a mäkký vred, ktorého pôvodcom 
je Haemophilus ducreyi.
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ABSTRACT
Čurová K., Kmeťová M., Siegfried L.: Cytolethal distending 
toxins
Cytolethal distending toxins (CDT) are intracellularly acting 
proteins which interfere with the eukaryotic cell cycle. They 
are produced by Gram-negative bacteria with affinity to 
mucocutaneous surfaces and could play a role in the patho-
genesis of various mammalian diseases. The functional toxin 
is composed of three proteins: CdtB entering the nucleus 
and by its nuclease activity inducing nuclear fragmentation 
and chromatin disintegration, CdtA, and CdtC, the two latter 
being responsible for toxin attachment to the surface of the 
target cell. Cytotoxic effect of CDT leads to the cell cycle 
arrest before the cell enters mitosis and to further changes 

(cell distension and death, apoptosis) depending on the cell 
type. Thus, CDT may function as a virulence factor in patho-
genic bacteria that produce it and thus may contribute to the 
initiation of certain diseases. Most important are inflammatory 
bowel diseases caused by intestinal bacteria, periodontitis with 
Aggregatibacter actinomycetemcomitans as the aetiologic 
agent and ulcus molle where Haemophilus ducreyi is the 
causative agent. 
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viedla k  rozvoju enterokolitídy, resp. septikémie. Šigely 
a salmonely produkujúce CDT boli izolované u človeka, kde 
kolonizujú mukózu tenkého čreva a spôsobujú závažné črev-
né ochorenia, dyzentériu a brušný týfus [4, 6, 7]. Najnovšie 
výskumy potvrdili prítomnosť CDT aj u Providencia alcalifaciens, 
ktorá bola izolovaná od pacientov s hnačkou [8]. 
V rámci čeľade Pasteurellaceae boli CDT potvrdené u druhov 
Haemophilus ducreyi, Haemophilus parasuis a  Aggregatibacter acti-
nomycetemcomitans (predtým Actinobacillus actinomycetemcomi-
tans). H. ducreyi je humánny patogén spôsobujúci pohlavne 
prenosné ochorenie, označované ako ulcus molle (mäkký 
vred) [9]. H. parasuis je komenzálom v  horných dýchacích 
cestách u  prasiat, býva asociovaný so septikémiou [10].  
A. actinomycetemcomitans je agens, ktorý sa u  ľudí podieľa 
na iniciácii chronickej periodontitídy a lokalizovanej agre-
sívnej periodontitídy [11]. 
Rod Campylobacter zahŕňa antropopatogénne aj zoopatogénne 
druhy, ktoré produkujú CDT: C. jejuni, C. coli, C. upsaliensis, C. 
hyointestinalis, C. lari, C. fetus subsp. fetus a C. fetus subsp. venerealis. 
Všetky tieto druhy kolonizujú u ľudí mukózu tenkého čreva 
a  prispievajú k  vzniku enterokolitídy, C. fetus subsp. fetus 
prispieva k vzniku bakteriémie. U zvierat (primáty, dobytok, 
ovce, prasatá, psy, mačky, fretky, kurčatá) sú uvedené dru-
hy bežnými komenzálmi, iba C. fetus subsp. fetus môže viesť 
k strate schopnosti rozmnožovať sa vďaka svojej schopnosti 
kolonizovať mukózu urogenitálneho traktu [1, 4, 12].
Produkcia CDT sa vyskytuje aj u  niektorých druhov rodu 
Helicobacter, ktoré sú primárne spojené s  enterokolitídou 
u ľudí aj u zvierat. Niektoré druhy spôsobujú bakteriémiu/
septikémiu, hepatitídu a  stratu schopnosti rozmnožovať 
sa. Miestom kolonizácie sú mukózne povrchy tenkého čre-
va, žlčových ciest a pečeň. H. cinaedi, H. canis, H. pullorum a H. 
winghamensis boli potvrdené u ľudí aj u zvierat, H. hepaticus, H. 
bilis, H. mastomyrinus len u zvierat [4, 12, 13]. 

GÉNY KÓDUJÚCE CDT
Gény kódujúce CDT boli identifikované v roku 1994 u bakté-
rií E. coli [14]. Operón, pozostávajúci z troch génov cdtA, cdtB 
a cdtC, kóduje produkciu proteínov CdtA (25,5–29,9 kDa), CdtB 
(29–31,5 kDa) a CdtC (20,7–21,2 kDa) [15]. Podľa niektorých 
štúdií sa CdtA, CdtB a CdtC zoskupujú do heterotrimérneho 
komplexu, ktorý predstavuje holotoxín CDT [16, 17].
U takmer všetkých CDT produkujúcich baktérií sú gény, ktoré 
kódujú CDT, umiestnené na chromozóme. Ide o susediace 
alebo mierne sa prekrývajúce gény cdtA, cdtB a  cdtC, ktoré 
spolu tvoria konštitutívne exprimovaný operón (obr. 1a). 
E. coli sa významne líši od všetkých ostatných baktérií, ktoré 
produkujú CDT. Unikátnosť spočíva v  tom, že dosiaľ bolo 
u tejto baktérie objavených a popísaných 5 rôznych variantov 
CdtB, označovaných CdtB-I – CdtB-V, pričom CdtB-I, -II, -IV 
a -V sú kódované chromozómovým génovým lokusom a CdtB-
III dlhým konjugatívnym plazmidom pVir [5, 6, 18, 19]. U A. 
actinomycetemcomitans sa predpokladá, že cdt gény sú súčasťou 
chromozómového ostrova patogenity [20].
Takáto organizácia génov neplatí pre Salmonella Typhi, ktorej 
chýbajú gény cdtA a cdtC. Gén cdtB je súčasťou chromozómu, 
nachádza sa na  ostrove patogenity, ktorý je vymedzený 
inzerčnými sekvenciami. Oproti cdtB sú umiestnené gény 
pltA a pltB (obr. 1b), ktorých produkty sa spájajú s CdtB pri 
formovaní heterotrimérneho komplexu CDT [21].

ŠTRUKTÚRA A ENZYMATICKÁ AKTIVITA
CDT je tvorený tromi podjednotkami: CdtA, CdtB a CdtC, 
pre úplnú aktivitu holotoxínu sú potrebné všetky tri. Pre 
bunkovú toxicitu indukovanú cytoletálnym toxínom bol 

navrhnutý AB2 molekulárny model toxínu [16], podľa ktorého 
katalyticky aktívna zložka A sa prikladá k zložkám B. Zložku 
A predstavuje podjednotka CdtB, zodpovedná za cytotoxicitu 
a zložku B2 podjednotky CdtA a CdtC, ktoré umožňujú pripo-
jenie CDT k bunke [5].
U S. Typhi, ktorej chýbajú cdtA a cdtC, závisí bunková aktivita 
toxínu od expresie dvoch génov: pltA (kóduje pertussis-like 
toxín A, PltA) a pltB (kóduje pertussis-like toxín B, PltB), pre-
tože produkty oboch génov formujú heterotrimérny komplex 
s CdtB. V tomto komplexe sú podjednotky PltA a PltB potrebné 
pre transport CDT S. Typhi z intracelulárneho do extracelu-
lárneho prostredia, kde CDT pôsobí na susedné neinfikované 
bunky. Takýto mechanizmus predtým nebol popísaný pre 
žiadny AB-toxín [22, 23]. 
Celulárny toxický efekt u buniek intoxikovaných proteínom 
CDT je spôsobený aktivitou podjednotky CdtB, ktorá sa 
prejavuje degradáciou DNA. Zistilo sa, že katalytické zvyš
ky CdtB C. jejuni a E. coli sú zhodné s eukaryotickou DNázou 
I, čo prispelo k presvedčeniu, že táto podjednotka pôsobí 
ako intracelulárna DNáza. CdtB zároveň pôsobí nielen 
ako DNáza, ale tiež ako fosfatáza. Podľa niektorých štúdií 
CdtB indukuje zastavenie bunkového cyklu fosfatázovou 
aktivitou viac ako DNázovou, pretože sekvencie CdtB sú 
homologické so sekvenciami členov superrodiny metalo-
enzýmov [23, 24]. 
U rôznych bakterií, ktoré produkujú CDT, vykazujú podjed-
notky CdtA, CdtB a CdtC rôzny stupeň podobnosti aminoky-
selinových sekvencií. Podjednotky CdtB majú vyšší stupeň 
podobnosti, CdtA a CdtC sú variabilnejšie [25].

PRODUKCIA A BIOLOGICKÁ AKTIVITA
Prevalencia génov kódujúcich CDT a  biologická aktivita 
toxínu v  rámci jednotlivých bakteriálnych druhov medzi 
klinickými izolátmi je rozdielna. V  čeľadi Pasteurellaceae 
a  v  rodoch Campylobacter a  Helicobacter je prevalencia vše
obecne vyššia ako 85%, v  čeľadi Enterobacteriaceae je nižšia 
ako 14 %. Zvlášť pri E. coli doterajšie výskumy poukazujú 
na nízke percento kmeňov, ktoré obsahujú operón génov cdt. 
Príčinou je pravdepodobne existencia variantov I–V, ktoré 
boli objavené a charakterizované len v posledných rokoch. 
Jedinou výnimkou medzi E. coli sú sorbitol fermentujúce STEC 
O157:H-, pri ktorých až 86,7 % klinických izolátov obsahovalo 
gény cdt [4, 6].
V  súvislosti s  rozmanitou distribúciou medzi klinickými 
izolátmi bola biologická aktivita CDT v  rámci jednotli-
vých bakteriálnych druhov zistená buď v  supernatante 
bakteriálnej kultúry (teda pravdepodobne ide o  aktívnu 
sekréciu), alebo v  bakteriálnom lyzáte alebo v  obidvoch. 

Obr. 1.  Organizácia génov kódujúcich CDT 
a) u všetkých baktérií produkujúcich CDT okrem S. Typhi,
b) u S. Typhi [upravené podľa 4]
Fig 1.     Organization of the genes encoding CDT
a) in all CDT-producing bacteria except S. Typhi,
b) in S. Typhi [edited by 4]
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Aktivita týchto rôznych frakcií môže kolísať od  relatívne 
vysokej, cez strednú, nízku, až po  absenciu aktivity, čo 
môže súvisieť s  patogenézou ochorenia pri jednotlivých 
bakteriálnych patogénoch [4]. Táto vlastnosť CDT je veľmi 
zaujímavá, a preto aj podrobne študovaná u C. jejuni. U tejto 
baktérie sa prítomnosť CDT potvrdila najskôr v supernatan-
te bakteriálnej kultúry [2], neskôr v  bakteriálnom lyzáte 
[26] a  biologická aktivita toxínu u  väčšiny kmeňov bola 
pomerne vysoká. Abououn et al. poukázali na skutočnosť, 
že niektoré kmene C. jejuni napriek prítomnosti génov nevy-
kazovali žiadnu biologickú aktivitu [27]. Podľa najnovších 
výskumov CDT toxíny prítomné v supernatante bakteriálnej 
kultúry boli úzko spojené s vezikulami vonkajšej membrá-
ny. V súvislosti s črevnou infekciou má toto spojenie svoj 
význam, keďže môže slúžiť ako ochrana proti natráveniu 
enzýmami, čo umožňuje vychytávanie intaktného toxínu 
enterocytmi hostiteľa [4, 28]. 

INTERNALIZÁCIA CDT DO JADRA
Nároky holotoxínu na absorpciu a intracelulárny transport 
v hostiteľskej bunke a jeho bunková toxicita vytvárajú dyna-
mický vzťah, ktorý bol popísaný u druhov A. actinomycetemco-
mitans, C. jejuni, E. coli CdtB-I a -II a H. ducreyi. U týchto patogé-
nov sa podjednotky CdtA a CdtC spájajú s mikrodoménami 
lipidových mostíkov, ktoré sú umiestnené na  membráne 
hostiteľskej bunky a sú bohaté na cholesterol/sfingomyelín 
[14, 16, 29]. 

CDT je prvý bakteriálny proteín – toxín, o ktorom je známe, 
že pôsobí v  jadre cieľovej bunky. Predpokladom pre into-
xikáciu je pripojenie k  plazmatickej membráne, prechod 
cez membránu a vstup do jadra hostiteľskej bunky. Cesta 
internalizácie bola podrobne preštudovaná u CDT H. ducreyi, 
A. actinomycetemcomitans a E. coli [30]. Výskumy s CDT H. ducreyi 
a HeLa bunkami poukázali na to, že CDT sa včleňuje do endo-
zómov endocytózou, ktorá si vyžaduje pôsobenie dynamínu. 
Podjednotka CdtB ďalej prechádza do Golgiho komplexu, po-
tom je transportovaná do endoplazmatického retikula (ER) 
a odtiaľ pravdepodobne priamo translokovaná do jadra, kde 
vykazuje genotoxickú aktivitu (obr. 2, 3a). K  translokácii 
z ER do jadra nie je potrebná degradácia a rozklad proteínu, 
na rozdiel od väčšiny toxínov [31]. Prítomnosť podjednotky 
CdtB v  cytoplazme intoxikovaných buniek sa nepodarilo 
dokázať, čo len podporuje hypotézu o priamej translokácii 
CDT z ER do jadra [32].
S. Typhi využíva odlišnú cestu internalizácie. Po  vstupe 
do hostiteľskej bunky sa baktéria stáva súčasťou vakuoly, 
čo vedie k súčasnej expresii CdtB, PltA a PltB. Tieto podjed-
notky sa zostavujú do funkčných holotoxínových komplexov. 
Komplexy sú zbalené do transportných vezikúl, určených pre 
extracelulárnu sekréciu a intoxikáciu infikovaných aj sused-
ných ešte neinfikovaných hostiteľských buniek (obr. 3b). 
Absencia receptora pre CDT S. Typhi v infikovaných hosti-
teľských bunkách je považovaná za ochranný mechanizmus 
proti cytotoxicite, ktorý umožňuje baktérii prežiť vnútri 
bunky a tým aj perzistovať v infikovaných tkanivách [21, 30].

VPLYV CDT NA BUNKOVÝ CYKLUS
Označenie genotoxín pre CDT je odvodené z  výskumov, 
pri ktorých sa zistilo, že CdtB pôsobí v podmienkach in vitro 
ako DNáza [33], indukuje fragmentáciu jadra a rozrušenie 
chromatínu po transfekcii v kultúrach buniek cicavcov alebo 
Saccharomyces cerevisae [34] a napokon indukuje fragmentáciu 
DNA v  bunkách intoxikovaných exogénne pridaným CDT 
[35].
Účinok CDT sa prejavuje narušením integrity genómu 
hostiteľskej bunky a  indukciou  odpovede, ktorá smeruje 
k oprave lézií DNA a prežitiu bunky. Na základe DNázovej 
aktivity CDT dochádza k sérii komplexných mechanizmov, 
ktoré predstavujú odpoveď na  poškodenie DNA (DNA da-
mage responses, DDR). Tieto mechanizmy pôsobia tak, 
že opravujú genóm a minimalizujú možnosť letálneho či 
trvalého poškodenia genómu. Bunkový cyklus eukaryo-
tických buniek, na  ktoré pôsobí CDT, sa zastavuje v  G1, 
S alebo G2 fáze, bunka tak nemôže vstúpiť do poslednej fázy 

Obr. 2.   Absorpcia CDT a intracelulárny transport v bunkách 
cicavcov [30]
Fig 2.      CDT uptake and intracellular transport in mammalian 
cells [30]

Obr. 3.   Interakcia CDT s hostiteľskými bunkami cicavcov
a) u všetkých baktérií produkujúcich CDT okrem S. Typhi,
b) U S. Typhi [4]
Fig 3.       Interaction of CDT with mammalian host cells
a) in nearly all CDT-producing bacteria except S. Typhi,
b) in S. Typhi [4]
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bunkového cyklu, ktorou je mitóza. Ak oprava lézií DNA 
nie je úspešná, dochádza buď k postupnému zväčšovaniu 
a rozširovaniu hostiteľskej bunky a následnej smrti, alebo 
sa v krátkom čase po intoxikácii aktivujú mechanizmy sme-
rujúce k apoptóze. Závisí to od typu bunky. Vo všeobecnosti 
platí, že intoxikácia buniek nehematopoetického pôvodu 
toxínom CDT vedie k zastaveniu bunkového cyklu v rôznych 
fázach a apoptóza je pozorovaná veľmi neskoro. Časový in-
terval, v ktorom dochádza k apoptóze, je často dlhší ako 96 
hodín po intoxikácii. Hematopoetické bunky (najmä T a B 
lymfocyty aj bunky myeloidnej línie) po intoxikácii veľmi 
rýchlo podliehajú apoptóze [4, 23].
Podľa Heywood et al. pôsobí CDT na bunkový cyklus eukaryo-
tických buniek mechanizmom, pre ktorý sú charakteristické 
tieto znaky: 
a)	 inhibícia proliferácie epitelových buniek a apoptóza, ktorá 

podporuje invazivitu baktérií; 
b)	 inhibícia proliferácie imunitných buniek, s následkom 

navodenia lokálnej imunosupresie; 
c)	 inhibícia fibrotickej odpovede, ktorá podporuje šírenie 

invadujúcich baktérií [15].

CDT AKO FAKTOR VIRULENCIE 
Produkcia CDT môže zohrávať dôležitú úlohu v patogenéze 
niektorých ochorení. Zvlášť významné sú zápalové črevné 
ochorenia vyvolané črevnými baktériami. Počas posledných 
rokov sa však do centra pozornosti dostali dve CDT produku
júce baktérie z čeľade Pasteurellaceae, H. ducreyi a A. actinomyce-
temcomitans. H. ducreyi sa uplatňuje v patogenéze ulcus molle, 
A. actinomycetemcomitans v patogenéze periodontitídy. U všet-
kých týchto baktérií, izolovaných pri uvedených ochoreni-
ach, bola zistená prítomnosť génov cdt a produkcia toxínu [4].

Črevné ochorenia
Niektoré baktérie produkujúce CDT, ako C. jejuni a H. hepa-
ticus, sú spojené s gastroenteritídou. V posledných rokoch 
bolo dokázané, že chronický zápal je spojený so zvýšeným 
rizikom vzniku nádoru, pričom najlepšie preštudovaným 
modelom je kolorektálny karcinóm. Je pravdepodobné, 
že v  prípade opakovanej bakteriálnej infekcie, ktorá má 
za následok vznik perzistentného zápalu, produkcia geno-
toxínov v asociácii s genetickými faktormi hostiteľa pris-
pieva k nestabilite genómu a vzniku nádoru a/alebo k jeho 
progresii. H. pylori sa podieľa na iniciácii rakoviny žalúdka 
(je to karcinogén typu I). Postupne pribúdajú dôkazy o tom, 
že aj ďalšie druhy helikobakterov môžu byť spojené so 
vznikom chronických ochorení pečene, vrátane chronickej 
hepatitídy, chronickej cholecystitídy a cholangiokarcinómu 
[23, 30]. K zisteniu úlohy CDT pri chronických infekciách 
a  zápaloch sa využívajú rôzne zvieracie modely, napr. 
laboratórne myši, infikované baktériami produkujúcimi 
CDT. Takýmto spôsobom boli uskutočnené výskumy s CDT 
C. jejuni a H. hepaticus. Výsledky týchto výskumov poukazujú 
na CDT ako na významný faktor virulencie, ktorý prispieva 
k  invazivite črevných baktérií a  aktivuje prozápalové od-
povede. Následkom môže byť chronický zápal, respektíve 
progresia zápalu k malígnej transformácii. CDT je jediný 
známy faktor virulencie produkovaný druhmi H. hepaticus 
a H. bilis, ktorý u chronicky infikovaných myší vedie k vzniku 
zápalu a karcinómu pečene a hrubého čreva [36, 37]. Hickey 
et al. poukázali na to, že všetky tri podjednotky CDT C. jejuni 
podporujú sekréciu interleukínu 8 (IL-8), ktorý je dôležitým 
mediátorom zápalu, z  črevných epitelových buniek [38]. 
Zápal gastrointestinálneho traktu je tak pravdepodobne 
hlavným znakom intoxikácie toxínom CDT. Pri zápale 
po  poškodení mikroklkov epitelových buniek sa znižuje 

ochranná funkcia črevného epitelu a stráca sa schopnosť 
absorbovať živiny [39]. Výsledky výskumov na  myšiach 
s CDT mutantnými baktériami H. hepaticus tiež potvrdzujú, 
že CDT prispieva k vytváraniu lézií [15].
Úloha, akú zohráva CDT u E. coli, nie je celkom jasná. V prí-
pade STEC sa potvrdzuje predpoklad, že CDT pôsobí v kom-
binácii s inými toxínmi. Výskumy STEC, izolovaných od pa-
cientov s  hemolyticko-uremickým syndrómom, vodnatou 
hnačkou a  od  asymptomatických pacientov, poukazujú 
na výskyt CDT 86,7 % medzi sorbitol fermentujúcimi E. coli 
O157:H-, ktoré súčasne obsahujú gény kódujúce šigatoxín 
2 a  intimín. U  sorbitol nefermentujúcich kmeňov E. coli 
O157:H7 bol výskyt CDT len 6 % [6]. Štúdie klinických kme-
ňov izolovaných zo stolice pri hnačkách poukázali na to, že 
gény cdt boli prítomné len u 0,5–3,1 % kmeňov. V porovnaní 
s nehnačkogénnymi kmeňmi, kde bol výskyt cdt 0,5–1 %, je 
síce percento výskytu vyššie, ale nepoukazuje na  výraznú 
asociáciu s hnačkovými ochoreniami [40, 41, 42]. CDT pozi-
tívne kmene E. coli boli okrem toho potvrdené pri neonatálnej 
bakteriálnej meningitíde a infekciách močových ciest. Tieto 
zistenia navrhujú, že E. coli produkujúce CDT môžu pôsobiť 
ako oportunistické patogény bez akéhosi upriamenia na črev-
nú infekciu. Aj v týchto prípadoch sa predpokladá, že CDT 
nepôsobí samostatne, ale v kombinácii s inými toxínmi E. 
coli, napríklad enterotoxín, cytotoxický nekrotizujúci faktor 
typu 2 [41, 43]. 
Dôkaz o tom, že CDT zohráva úlohu v patogenéze hnačky, 
priniesol experiment, pri ktorom bol operón cdt Shigella dysen-
teriae naklonovaný do nehnačkogénneho rekombinantného 
kmeňa E. coli. U malých cicajúcich myší došlo v priebehu 24 
hodín ku vzniku hnačky. V porovnaní s inými baktériami 
produkujúcimi CDT sú u Shigella sp. výskumy zriedkavé, preto 
nie je známy výskyt CDT [5, 44]. 
U S. Typhi sa predpokladá, že CdtB môže byť významný pri 
vzniku perzistentných infekcií, ktoré sú spôsobené imuno-
supresívnym účinkom [21]. Narušenie črevnej mikroflóry 
a chronická infekcia touto baktériou predstavujú faktory, 
ktoré sú spojené so zvýšeným rizikom rozvoja karcinómu 
hrubého čreva a cholangiokarcinómu. Chronický zápal sa 
považuje za kľúčový moment bakteriálnej onkogenézy, pre-
tože indukuje oxidačný stres, ktorý prispieva k poškodeniu 
DNA infikovaných buniek [45, 46]. 
V centre pozornosti mnohých súčasných výskumných prác 
je zistiť, či baktérie majú schopnosť podporiť proces rozvoja 
nádorov tým, že produkujú genotoxíny, ktoré priamo in-
dukujú poškodenie DNA. Jednoznačná odpoveď zatiaľ stále 
chýba. Zástancovia tejto tézy poukazujú na  určité vlast-
nosti, ktoré sú spoločné pre známe karcinogény aj CDT. Sú 
to: indukcia nestability genómu, zmeny v mechanizmoch 
DDR, prekonanie bariéry vedúcej k rozvoju karcinogenézy 
(chýba starnutie buniek), konštitutívna aktivácia signálov 
prežitia a progresie nádoru (nekoordinovaný rast). Chronická 
infekcia baktériami produkujúcimi CDT teda môže zohrávať 
úlohu v možnej malígnej transformácii buniek  a výsledky 
výskumov poskytujú molekulárny dôkaz typu genetických 
a funkčných alterácií, ktoré môžu byť do procesu karcinoge-
nézy zapojené [46, 30]. 

Ulcus molle
H. ducreyi je príčinou pohlavne prenosného ochorenia, ozna-
čovaného ako ulcus molle, s výskytom hlavne v tropických 
oblastiach. Ochorenie sa prejavuje tvorbou bolestivých 
vredov na genitáliách a v ich okolí [47]. Účasť CDT pri tvorbe 
vredov bola zistená na králičom modeli mäkkého vredu, kde 
po intradermálnej inokulácii H. ducreyi produkujúceho tento 
toxín bolo pozorované signifikantné zhoršenie zápalových 
lézií indukovaných baktériami a vznik vredu [48]. CDT H. 
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ducreyi ovplyvňuje proliferáciu buniek a  prežívanie mno-
hých typov buniek zapojených do hojenia rán (fibroblasty, 
keratinocyty, bunky epitelového pôvodu). Môže tiež zasa-
hovať do angiogenézy, pretože CDT ovplyvňuje proliferáciu 
normálnych ľudských mikrovaskulárnych endotelových 
buniek a endotelových buniek pupočníkovej žily. Okrem 
toho CDT pôsobí na efektorové bunky imunitného systému: 
intoxikácia inhibuje proliferáciu a sekréciu IFN-γ T lymfo-
cytmi a indukuje apoptózu B lymfocytov a dendritických 
buniek (DC) [49, 50]. Keďže inkubácia DC s purifikovaným 
CDT H. ducreyi má za následok pokles sekrécie cytokínov asi 
o  50 %, predpokladá sa imunoinhibičný účinok toxínu. 
Pôsobenie na  DC predstavuje stratégiu, ako sa vyhnúť 
imunitnej odpovedi alebo ju oneskoriť. Inhibícia bunkovej 
proliferácie môže tiež narušiť proces hojenia rán tým, že 
podporuje šírenie patogéna a iniciuje tak vznik latentnej 
infekcie [30, 50]. 

Periodontitída
Periodontitída patrí medzi najčastejšie diagnostikované 
odontogénne patologické stavy u ľudí. Vzniká ako dôsledok 
endodontickej, ale aj periodontálnej infekcie a  prejavuje 
sa zápalom a  degeneráciou podporných tkanív zubov. Ide 
o chronické zápalové ochorenie, ku ktorého iniciácii môže 
ako oportúnny patogén prispievať A. actinomycetemcomitans 
[51, 52]. Tan et al. vo svojej štúdii zistili prítomnosť A. actino-
mycetemcomitans pri 90,9 % vzoriek odobraných od pacientov 
s agresívnou periodontitídou, gény cdt boli potvrdené u 33,3 % 
izolátov [53]. Toxický účinok CDT môže prispievať k iniciácii 
periodontitídy, keďže proliferácia periodontálnych buniek 
ligamentu a gingiválnych fibroblastov, ktoré sú kľúčovými 
zložkami tkaniva okolo zubov, je inhibovaná práve týmto to-
xínom [54]. CDT A. actinomycetemcomitans okrem toho inhibuje 
proliferáciu a spôsobuje apoptózu CD8+ a CD4+ T lymfocytov 
a mononukleárne bunky periférnej krvi vystavené pôsobeniu 
CDT sú schopné produkovať široké spektrum prozápalových 
cytokínov, akými sú IL-1ß, IL-6,IL-8 a  IFN-γ, ale sekrécia  
IL-10, IL-12 a TNF-α nebola detegovaná [55, 56]. To vedie k zly-
haniu imunitného systému, ktorý by mal prostredie zuba 
chrániť pred atakom baktérií. Predpokladá sa, že indukcia 
produkcie špecifickej skupiny cytokínov vplyvom CDT A. acti-
nomycetemcomitans vedie k patológii zápalu, inhibuje funkcie 
T lymfocytov a tým možno vytvára vhodné miesto na prežitie 
a proliferáciu baktérií [5, 30].

ZÁVER
Od objavenia CDT v roku 1987 pribudlo množstvo poznat-
kov, ktoré objasnili štruktúru toxínu, jeho enzymatickú 
aktivitu, genetiku, pôsobenie na  bunkový cyklus a  čias-
točne aj mechanizmus bunkovej toxicity. Úloha, ktorú 
zohrávajú cytoletálne toxíny v  ochoreniach vyvolaných 
rôznymi patogénmi produkujúcimi CDT, je pravdepodobne 
odlišná a v mnohých prípadoch aj stále nejasná. Minimálne 
u H. ducreyi a A. actinomycetemcomitans je zrejmé, že CDT sú 
determinantmi ochorení, pretože pôsobia antiproliferatívne 
a apopticky na rôzne typy buniek (bunky kože a mukózy, 
endotelové bunky, bunky imunitného systému). Takýmto 
spôsobom môžu byť zodpovedné za pomalé hojenie a chro-
nický priebeh ulcus molle a  agresívnej periodontitídy. 
Na druhej strane CDT nie je agens, ktorý priamo prispieva 
k indukcii hnačky pri akútnych črevných infekciách vyvola-
ných C. jejuni, môže však prispievať k pretrvávaniu príznakov 
dlhšiu dobu alebo viesť ku kolonizácii mukóznych povrchov 
určitými črevnými patogénmi. Aj vzťah medzi patogénom 
produkujúcim CDT (H. hepaticus, H. bilis, S. Typhi a iné), kar-
cinómom a schopnosťou CDT narušiť DNA v rôznych typoch 

bunkových línií cicavcov nie je ešte dostatočne vysvetlený. 
Význam CDT a možnosti uplatnenia ako kofaktora pri vzni-
ku karcinómu je potrebné ešte študovať a bližšie vysvetliť. 
Okrem toho je potrebné zistiť, či CDT môže byť hlavným 
faktorom virulencie, ktorý prispieva k patogenéze jednot-
livých ochorení.
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