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Summary

The prevalence of multidrug-resistant tuberculosis (MDR-
-TB) and extensively drug-resistant tuberculosis (XDR-
-TB) has been increasing at an alarming rate worldwide. 
Today’s “Fight against Tuberculosis“ programmes in the 
Russian Federation are subsidized by state and regional 
governments as well as health authorities. Each region 
has its own specific characteristics and needs specific 
interventions. Although some novel anti-tuberculosis 
(anti-TB) drugs (bedaquiline, delamanid) were 
approved by relevant authorities, and some promising 
compounds, especially those of oxazolidinones, are  
in various phases of clinical trials worldwide, the 
finding of effective, safe, pharmacokinetically favo-
rable, economically and logistically accessible anti-TB 
agents still remains a serious challenge for medical and 
pharmaceutical sciences. Perchlozone, a  compound 
containing a thiosemicarbazone scaffold, was approved in 
the Russian Federation in 2012 for the treatment (alone or 
as the active component of complex treatment regimens) 
of HIV-1 negative as well as HIV-1 positive patients 
suffering from MDR-TB or XDR-TB. Mechanism of 
anti-TB action of perchlozone might be similar to that 
of thiacetazone, which belongs into the same chemical 
class. Perchlozone has to be probably activated 
into reactive species by a  mycobacterially encoded 
monoxygenase (EthA). The activated forms might act in 
multiple ways, including inhibition of mycobacterial cell 
wall synthesis due to interfence with a dehydration step 
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of the type II fatty acid synthase pathway or sensitization 
of the Mycobacterium tuberculosis cell to oxidative stress. 
Favorable toxicological properties of perchlozone and 
its tolerability by the human organism were confirmed 
within revevant preclinical and clinical studies. However, 
recent preliminary investigations in vivo (animal models) 
could indicate genotoxicity after subacute inhalation 
of the drug. Regarding this issue, further development 
of more convenient nano- or microparticle-based 
formulations of perchlozone potentially improving 
targeted delivering and efficiency as well as decreasing 
(eliminating) its eventual toxicity might be taken into 
strong consideration.
Key words: perchlozone • Mycobacterium tuberculosis 
• resistance • MDR-TB • XDR-TB • HIV-1 co-infection

Súhrn

Prevalencia multirezistentnej tuberkulózy (multidrug-re-
sistant tuberculosis – MDR-TB) a  extenzívne rezistent-
nej tuberkulózy (extensively drug-resistant tuberculosis 
– XDR-TB) sa vo svete alarmujúcim tempom zvyšuje. 
Aktuálne programy „Boja proti tuberkulóze“ sú v Ruskej 
federácii podporované štátnou vládou, regionálnymi 
vládami a tiež zdravotníckymi inštitúciami. Každý región 
tento krajiny má však vlastné špecifiká a  vyžaduje si 
špecifické intervencie. Napriek tomu, že niektoré nové an-
tituberkuloticky (anti-TB) pôsobiace liečivá (bedachilín, 
delamanid) boli už relevantnými inštitúciami schválené 
a iné sľubné zlúčeniny, najmä zo skupiny oxazolidinónov, 
sú v rôznych fázach klinických hodnotení prebiehajúcich 
vo svete, nájdenie efektívnych, bezpečných, farmakoki-
neticky výhodných, ekonomicky a logisticky dostupných 
anti-TB-liečiv stále zostáva pre medicínske a  farmaceu-
tické vedy veľkou výzvou. Tiosemikarbazónové liečivo 
perchlozón bolo v Ruskej federácii schválené v roku 2012 
pre liečbu (samostatne, alebo ako aktívna zložka komplex-
ných liečebných režimov) HIV-1-negatívnych a tiež HIV- 
-1-pozitívnych pacientov, ktorí sú postihnutí MDR-TB ale-
bo XDR-TB. Mechanizmus anti-TB-účinku perchlozónu 
by mohol byť podobný tomu, akým pôsobí tiacetazón, 
ktorý patrí do identickej chemickej skupiny. Perchlozóm 
musí byť pravdepodobne aktivovaný mykobakteriálne 
kódovanou oxygenázou (EthA) na reaktívne entity. Tieto 
aktívne formy by mohli pôsobiť viacerými mechanizma-
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viously treated cases had MDR-TB, or RR-TB, with the 
highest proportions (> 50% in previously treated cases) 
in the countries of the former Soviet Union3).

Regarding the fact that DR-TB notification rates rela-
tive to the population continue to increase in the Russian 
Federation despite the impressive decline in new TB no-
tification rates8), next sections of the paper provide a very 
brief overview on global situation together with possible 
promising non-pharmacotherapetic and especially phar-
macotherapeutic interventions, including characterizati-
on and practical experiences with one original anti-TB 
drug developed in this country.

Current prevalence of tuberculosis in the Russian 
Federation

The prevalence of TB in some regions of the Russian 
Federation was characterized by a “certain“ stabilization in 
the first decade of the 21st century. However, current overall 
situation remains very complicated and tense due to quite 
low level of prevention in adults together with worsening of 
clinical forms of both MDR-TB and XDR-TB9).

Today’s “Fight against Tuberculosis“ programmes are 
heavily subsidized by the state and regional governments 
as well as health authorities. The Russian Federation is 
one of the largest and most ethnically diverse multi-na-
tional federations in the world. The fact is that each re-
gion, i.e., particular federal subjects (republics, oblasts 
(provinces), krais (territories), autonomous okrugs (ar-
eas), autonomous oblasts, or federal cities) and Feder-
al Okrugs (subdivided into city okrugs and municipal 
raions), of the Russian Federation has its own specific 
characteristics and needs specific interventions10–12).

Control of TB in some regions has been noticeably im-
proved than in the others due to systematic and consistent 
implementation of fundamental principles of the TB con-
trol. The principles included rapid and reliable MDR-TB 
diagnostics, special chemotherapeutic strategy (includ-
ing systematic registration of all TB cases, rehabilitation, 
multidrug chemotherapy schemes and provisions of sup-
port to overcome negative social stigma associated with 
the disease) as well as application of effective infection 
control practices9–12).

More favorable epidemiological profile of TB burden 
in Tomsk Oblast might be attributed to highly effective 
anti-DR-TB programme, which was implemented in this 
region only. The programme has been recognized as one 
of the most successful projects to manage MDR-TB in 
the world. In contast, overall burden of TB in the Asian 
part of the Russian Federation is still very serious. The 
regions, where interventions are needed most urgently, 
are Chukotka Autonomous Okrug, Jewish Autonomous 
Oblast and Tyva Republic as well9–12).

Continuous search for efficient and safe anti-
-tuberculosis drugs and vaccines

The aims of TB-treatment are to kill mycobacteria 
quickly, prevent the development and resistance to drugs, 

mi, vrátane inhibície syntézy bunkovej steny mykobaktérií 
(kvôli interferencii s procesom dehydratácie syntázy mast
ných kyselín typu II) alebo senzitizácie bunky Mycobac-
terium tuberculosis voči oxidačnému stresu. V rámci rele-
vantných predklinických a klinických štúdií perchlozónu 
boli potvrdené jeho výhodné farmakokinetické vlastnosti 
a  tiež tolerovateľnosť ľudským organizmom. Aktuálne 
predbežné zistenia in  vivo (animálne modely) by však 
mohli indikovať genotoxicitu po subakútnej inhalácii tohto 
liečiva. Z uvedeného dôvodu je veľmi žiaduce uvažovať 
o  ďalšom vývoji výhodnejších spôsobov podania per-
chlozónu, ktoré sú založené na nano- a mikročasticových 
systémoch. Tieto inovatívne alternatívy by potenciálne 
zlepšili cielené dodanie liečiva, jeho účinnosť a  znížili 
(eliminovali) by aj eventuálnu toxicitu.
Kľúčové slová: perchlozón • Mycobacterium tuberculosis 
• rezistencia • MDR-TB • XDR-TB • koinfekcia HIV-1

Introduction

Tuberculosis (TB) is a communicable airborne infecti-
ous disease. Studies of human skeletons showed that this 
potentially deadly disease plagued humankind for millen
nia but its cause remained unknown until 1882, when 
Dr. Robert Koch announced discovery of a bacillus sub-
sequently termed Mycobacterium tuberculosis1, 2).

TB was regarded as one of relatively satisfactorily 
controlled infections for several decades, however, the 
emergence of drug-resistant tuberculosis (DR-TB) is be-
coming a major global threat3). Many forms of resistance 
of strains from Mycobacterium sp., including M. tuber-
culosis, to activity of drugs have been developed and can 
be found worldwide. The DR-TB form is caused by the 
Mycobacterium bacteria that are resistant to at least one 
first-line anti-TB drug, i.e., isoniazid (INH), rifampicin 
(RIF), pyrazinamide (PZA), or ethambutol (EMB). 
Polydrug-resistant TB (PDR-TB) indicates the resistance 
of the mycobacterial organisms to more than one anti-TB 
drug, but not including INH neither RIF. The MDR-TB 
disease is caused by the mycobacterial organisms resis-
tant to at least INH and RIF. Original definition of ex-
tensively drug-resistant tuberculosis (XDR-TB) needs to 
be modified as all-oral regimens become the standard of 
care. Pre-extensively (pre-extremely) drug-resistant TB 
(pre-XDR-TB) is caused by the multidrug-resistant my-
cobacterial strains, which are, in addition, resistant to any 
fluoroquinolone (FQ) or second-line injectable agent, 
i.e., amikacin (AK), kanamycin (KAN), or capreomy-
cin (CAP). The XDR-TB form is caused by the myco-
bacterial organisms, which show multidrug-resistance, 
and are resistant to any FQ and at least one of the second-
-line injectable anti-TB agents (AK, KAN, or CAP)4).

Increasing incidence of MDR-TB and XDR-TB world
wide is a  major concern for TB control programs5–7). 
In 2018, there were about half a  million new cases of  
RIF-resistant TB (RR-TB), of which 78% had MDR-TB. 
Countries with the largest share of global burden were 
India (27%), China (14%) and the Russian Federation 
(9%)3). Globally, 3.4% of new TB cases and 18% of pre-
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synthesis in enzyme’s  catalytic α3β3-headpiece. The 
process leads to depletion of bacterial ATP20). Secondly, 
indirect mechanism involves BDQ’s (1) uncoupling elec-
tron transport in the electron transport chain from ATP 
synthesis at the F-ATP synthase21). However, given un-
coupler mechanism was not confirmed by recent findings 
of Sarathy et al. (2019)22).

Another anti-TB agent approved recently, DLM (2) 
(Fig. 2), inhibits synthesis of mycobacterial cell wall 
components, methoxymycolic acid and ketomycolic 
acid. Mycolic acids are a complex mixture of branched, 
long-chain (C60–C90) fatty acids, representing key com-
ponents of the highly hydrophobic cell wall23). The com-
pound (2) is a prodrug, which gets activated by a specific 
enzyme, deazaflavin dependent nitroreductase (Rv3547). 
The reactive intermediate metabolite, formed between 
DLM (2) and the desnitro-imidazooxazole derivative, is 
considered to play a vital role in the inhibition of mycolic 
acid production24).

Stover et al. (2000) suggested25) that PTM (3) (Fig. 3)  
could act on the mycolic acid biosynthetic pathway 
via depletion of ketoymycolates and accumulation of 
hydroxymycolates, however, precise mechanism of 
its action is currently unclear. Baptista et al. (2018) 
proposed26) that mentioned compound might generate 
a toxic metabolite, methylglyoxal, which damaged the 
pathogen.

The PTM (3) molecule in a combination with BDQ (1) 
and linezolid (LNZ; 4) (Fig. 4) is approved for treating 
a  limited and specific population of adult patients with 
XDR-TB, treatment-intolerant or non-responsive pulmo-
nary MDR-TB27).

Due to the mechanisms of action that are different from 
those of other available anti-TB drugs, efficacy of the 
compounds (1–3) appeared optimal in cases of the adults 

eliminate lasting mycobacteria and prevent relapse and 
transmission of the disease13), respectively. On the con-
trary, the tendency of mycobacteria to mutate and de-
velop resistance to “simple“ treatment is very common 
and was the reason for combined treatment of MDR-TB 
and XDR-TB, respectively14). Classification of the com-
pounds, which were recommended by the World Health 
Organization (WHO) for use in both MDR-TB and XDR-
-TB regimens, can be found in reviews6, 7).

In recent years, only a  few effective drugs were ap-
proved and released for clinical practice in order to 
treat patients suffering from MDR-TB, XDR-TB, treat-
ment-intolerant or non-responsive MDR-TB as a part of 
combination regimen14–17).

Bedaquiline (BDQ; 1), a  molecule containing a  di
arylquinoline scaffold, delamanid (DLM; 2), a nitro-di-
hydro-imidazooxazole derivative, and pretomanid 
(PTM; 3), in whose structure a  nitroimidazooxazine 
moiety is incorporated, represent new anti-TB agents. 
These compounds were approved by relevant authorities 
for using in clinical practice in different countries nearly 
60 years after the last approval and release of a “classi-
cal“ RIF. Two modern drugs, BDQ (1) and DLM (2), 
have been also registered in the Russian Federation14–19).

The diarylquinoline derivative, BDQ (1) (Fig. 1), in-
hibits ATP generation in M. tuberculosis by interfering 
with its F-ATP synthase activity. Two mechanisms of 
action are broadly established for this molecule. Firstly, 
direct mechanism involves compound’s  binding to en-
zyme’s c-ring to block its rotation, thus inhibiting ATP 

Fig. 1. Chemical structure of bedaquiline (BDQ; 1) Fig. 3. Chemical structure of pretomanid (PTM; 3)

Fig. 2. Chemical structure of delamanid (DLM; 2)
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ribosomal subunit blockage of mycobacterial pathogens, 
contain a differently substituted oxazolidinone structural 
motif28).

In addition, the patient-centered approach with suit-
able case management strategies should be implemented 
in practice, taking into very strong consideration social, 
cultural and environmental aspects of the care. All-oral 
treatment regimens including new and repurposed drugs 
might be a preferable strategy for most patients. Inject-
able anti-TB agents should be avoided whenever possi-
ble6).

Development of a TB-vaccine also remains a critical 
global health priority given the deadly nature of ongo-
ing TB-epidemic and spread of MDR-TB, or XDR-TB 
strains. Significant degree of protection against the TB 
disease shown by the M72/AS01E vaccine candidate, 
which is in a phase 2b clinical trial, strongly suggested 
that TB-vaccines are feasible and encouraging preclinical 
results from advanced vaccine candidates, such as a cy-
tomegalovirus-vectored TB vaccine construct, offer the 
prospect of further progress29).

Perchlozone as a new armor in combating multidrug- 
-resistant tuberculosis and extensively drug-resistant 
tuberculosis

Perchlozone (PCZ; 9), chemically 4-tioureidoimino-
methylpyridinium perchlorate, was synthesized in 1990 
in the A. E. Favorsky Irkutsk Institute of Chemistry (Si-
berian Branch of the Russian Academy of Sciences), 
founded in 1957 as one of the first academic institutes 

with resistant pulmonary TB. Although drugs’ pharma-
cokinetic and pharmacodynamic profiles seem optimal 
as well, potential cardiovascular side effects of BDQ (1) 
and DLM (2), such as QT-interval prolongation, have 
been associated with their use. Moreover, there can be 
found also some “technical“ limitations of those modern 
anti-TB drugs, including high price and limited availabil-
ity together with logistic issues in many regions of the 
world14, 17).

Following those obstacles, the development, preclinical 
and clinical investigations, approval and clinical use of 
highly effective and safe anti-TB agents to combat DR-TB,  
MDR-TB, or XDR-TB, is still major challenge and task. 
LNZ (4), sutezolid (STZ; 5), delpazolid (DPZ; 6), po-
sizolid (PSZ; 7), or contezolid (CTZ; 8) are currently in 
various phases of clinical trials. These compounds (Figs. 
4, 5 and 6), which inhibit protein synthesis due to 50S 

Fig. 6. Chemical structure of contezolid (CTZ; 8)

Fig. 4. Chemical structures of linezolid (LNZ; 4) and sutezolid (STZ; 5)

Fig. 5. Chemical structures of delpazolid (DPZ; 6) and posizolid (PSZ; 7)
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8 as well as 16 drug-resistant clinical isolates, including 
MDR-TB strains. Experiments employing animal mo-
dels revealed therapeutic effect in vivo of PCZ (9) com-
parable to INH, AK and ofloxacin (OFX), respectively. 
In addition, PCZ (9) was even more efficient than EMB 
or ciprofloxacin (CPX) and was regarded as a more fa-
vorable therapeutic alternative than FQs. In summary, 
preclinical investigations of PCZ (9) confirmed its high 
activity in vivo against various TB and non-TB strains of 
mycobacteria as well as convenient pharmacokinetic and 
toxicological properties30).

Clinical phases of the research started at the State Re-
search Center for Preventive Medicine (Moscow; current 
name is the National Research Center for Preventive 
Medicine) and the State Research Institute of Immuno-
logy, Russian Academy of Medical Sciences (Moscow) 
in 200938, 39).

Upon official approval of PCZ (9) in November 2012 
and its introduction in routine clinical practice for the 
treatment of MDR-TB and XDR-TB, the effectiveness 
of short-term (6-months) therapies was significantly in-
creased40, 41).

The use of concerned compound as an integral part of 
combination therapy regimens notably reduced the time 
of bacilli elimination in pulmonary TB caused by the 
DR-TB strains. It was observed that PCZ (9) gave pati-
ents suffering from the severest and epidemiogically poor 
form of TB a chance to recover42).

When PCZ (9) was included in a scheme for the tre-
atment of HIV-1 negative patients, who were infected 
with M. avium, anti-inflammatory effect of the drug was 
observed42). Similarly, if BDQ (1) and PCZ (9) were in-
troduced simultaneously as active components of very 
complex treatment regimens for patients suffering from 
MDR-TB, or XDR-TB, ceasing of mycobacterial excre-
tion, closing of decay cavities, regression of inflammato-
ry changes, elimination of the TB bacilli and achieving of 
positive X-ray dynamics, respectively, was observed43, 44).

Hypothyroidism is a  well-known side effect of the 
MDR-TB treatment. However, only a few studies descri-
bed an eventual relationship between the progression of 
this syndrome and anti-TB therapy based on PCZ (9). 
Results from a retrospective study involving the patients 
treated with PCZ (9) indicated that there was no need to 
replace given anti-TB drug with the other one(s) due to 
eventual worsening of hypothyroidism45).

The thiosemicarbazone scaffold-containing molecule 
(9), when being combined with antiretroviral therapy, 

in the Eastern Siberia, in cooperation with St. Petersburg 
Research Institute of Phthisiopulmonology (Russian Fe-
deration). This compound (Fig. 7) belongs chemically 
into the class of thiosemicarbazones, whose anti-TB 
activity is well-known30–32).

X-Ray diffraction analysis of a  crystal structure of 
PCZ (9) showed that both pyridine and thiosemicarba-
zone fragments were almost planar. The cation part of 
given molecule contained four hydrogen atoms attached 
to nitrogens (N1, N3 and N4) (Fig. 7), which were capab-
le of hydrogen bonding. Relatively weak hydrogen bonds 
involving sulfur atoms of neighboring thiosemicarbazo-
ne chains were present and linked the cations into “di-
mers“33). The hydrogen bond was formed between N-H 
(N3 atom of first monomer) and S (second monomer) as 
well as N-H (N3 atom of second monomer) and S (first 
monomer).

The molecular anti-TB mechanism for thiosemicarba-
zones has not been understood clearly yet. Thiacetazone 
(TAZ; 10) (Fig. 8), also termed thioacetazone, tibione, or 
amithiozone, is an old, inexpensive anti-TB compound, 
which belongs structurally into the same “chemical“ class 
as PCZ (9). It was proposed that TAZ (10), as a prodrug, 
required activation by a  mycobacterially encoded mo-
noxygenase, EthA. The activated compound affected my-
colic acid synthesis, probably by inhibiting cyclopropane 
mycolic acid synthases. In addition, thiosemicarbazone 
group chelated metal cations strongly and anti-TB effici-
ency of TAZ (10) was potentiated by copper23, 34, 35).

Therefore, anti-TB properties of PCZ (9) might be de-
pendent on its conversion to one or more active agents. 
The EthA enzyme of M. tuberculosis would oxidize 
a “parent“ compound to a highly reactive sulfenic acid 
form, which might specifically covalently react with 
a  cysteine residue of a  hydroxyacyl-ACP-dehydratase 
(HadA) subunit of dehydratase (type II fatty acid syntha-
se; FAS-II), thereby inhibiting formation of hydroxyacyl-
-ACP-dehydratase heterodimers (HadAB) of FAS-II36).

Moreover, a  carbodiimide metabolite generated from 
a sulfenic acid intermediate via sulfenic acid form should 
react with mycothiol, a prinicipal thiol in mycobacteria, 
which protects the M. tuberculosis cell against oxidative 
damage and electrophilic toxins. Both sulfenic acid inter-
mediate and carbodiimide metabolite might sensitize M. 
tuberculosis to oxidative damage37).

The PCZ (9) molecule showed bactericidal activity 
in vitro against M. tuberculosis Erdman, M. tuberculo-
sis H37Rv, M. tuberculosis „Academia“, M. bovis bovinus 

Fig. 7. Chemical structure of perchlozone (PCZ; 9) Fig. 8. Chemical structure of thiacetazone (TAZ; 10)
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clinical outcomes of the treatment. It might be expected 
that PCZ (9) acted as a prodrug. Baeyer-Villiger mono-
oxygenase (EthA) from Mycobacterium spp. has broad 
substrate specificity, being able to oxidize different com-
pounds, including the ones containing a  thiocarbamide, 
or thiosemicarbazone moiety. Thus, both highly reactive 
sulfenic acid intermediate and carbodiimide metabolite 
of PCZ (9) inhibit mycobacterial cell wall synthesis in-
terfering with a dehydration step of the type II fatty acid 
synthase (FAS II) pathway and sensitize the M. tuber-
culosis cell to oxidative stress, respectively. Recent pre-
liminary findings could indicate possible genotoxicity in 
vivo when experimental (animal) models were exposed 
to subacute inhalation of the drug. Therefore, it might be 
very reasonable to continue in more thorough and precise 
research focused on the selection of suitable formulations 
of PCZ (9). In this regard, nano- or microparticle-based 
drug formulations might be taken into strong consid-
eration in order to eliminate (eventual) toxicity of this 
very powerful synthetic “weapon“ against MDR-TB and 
XDR-TB as well.
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city of the drug was considerably reduced49).

Gopal and Dick (2015) found out that PCZ (9) and 
TAZ (10) affected a similar spectrum of mycobacterial 
strains and, in addition, might show a similar mechanism 
of action. The authors noted that possible cross-resistan-
ce of PCZ (9) and TAZ (10) with ethionamide (ETA) 
via EThA mutations should be kept in mind50).

The main limitation, which prevents more extensive 
use of PCZ (9) in the therapy of MDR-TB or XDR-TB, 
is that considered drug is practically not available outside 
the Russian Federation and has not been included in cur
rent recommendations of WHO, as published6, 7, 14).

Conclusions

The progress, which was achieved in the anti-TB com-
pounds development together with consistent implemen-
tation of effective anti-TB programmes in the 21st century, 
formed preconditions for satisfactory management of TB 
in the world. However, it might be quite irresponsible to 
speak silently about a very close victory over the disease 
or even declare loudly the winning approaches. Follow-
ing notable increase in the number of patients suffering 
from MDR-TB, or XDR-TB worldwide who could be, 
in addition, co-infected with HIV-1, the use of PCZ (9), 
as a  very efficient and safe component of combination 
therapy regimens, improved markedly therapeutic and 
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