
Souhrn

Již delší dobu je známa souvislost mezi peptidem ß-amy-

loidem (Aß) a Alzheimerovou nemocí (AD). Původní

hypotéza považující za hlavní toxickou formu Aß neroz-

pustné extracelulární plaky je dnes již překonána a zájem

se upírá k rozpustným formám Aß a jejich působení

uvnitř buňky. Je známo mnoho intracelulárních proteinů

interagujících s Aß, mezi nimi též mitochondriální

enzym amyloid vázající alkoholdehydrogenasa (ABAD).

Vazba Aß na tento enzym poškozuje zatím ne zcela zná-

mým mechanismem mitochondrie a v konečném důsled-

ku vede až k zániku buňky. V této práci jsou shrnuty

dosavadní poznatky o enzymu ABAD, jeho roli v rozvo-

ji AD a možnostech ovlivnění interakce ABAD-Aß jako

potenciálním cíli pro farmakoterapii tohoto závažného

onemocnění.
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Summary

The amyloid-ß peptide (Aß) has been associated with

Alzheimer’s disease (AD) for some time. The original

amyloid cascade hypothesis declared that the insoluble

extracellular plaques were responsible for main Aß
toxicity. Nowadays, this hypothesis is outdated and

soluble intracellular Aß forms and their effects within the

cell have come into the centre of attention. There are

many intracellular proteins interacting with Aß including

the mitochondrial enzyme amyloid-binding alcohol

dehydrogenase (ABAD). The interaction between ABAD

and Aß impairs mitochondrial functions and ultimately

results in cell death. In this review, current findings

concerning the enzyme ABAD are summarized. Its role

in AD development and its interaction with Aß as

a potential therapeutic target are discussed.
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Úvod

Alzheimerova choroba je nejběžnějším neurodegene-

rativním onemocněním vyskytujícím se u starší popula-

ce. Poprvé bylo onemocnění popsáno na začátku 20. sto-

letí Aloisem Alzheimerem. Je pro ni charakteristické

progresivní poškození kognitivních funkcí a paměti.

Ztráta mozkových funkcí vede k naprosté sociální nesa-

mostatnosti a v konečném důsledku ke smrti. Navzdory

intenzivnímu výzkumu není dosud známa přesná příčina

vzniku AD a mechanismus patologie v raném stadiu one-

mocnění, a tedy ani neexistuje efektivní terapie.

Hlavními patologickými znaky vyskytujícími se

v postižených oblastech mozku jsou přítomnost extrace-

lulárních senilních plaků tvořených peptidem ß-amyloi-

dem (Aß), intracelulárních neurofibrilárních klubek

vznikajících agregací fosforylovaného tau-proteinu

a ztráta neuronů, především cholinergních1, 2). AD je dále

spjata se zánikem synapsí, poškozením mitochondrií

a zánětlivou reakcí3–7).

Ačkoliv není známa přesná příčina AD, předpokládá

se, že hlavní roli v patologii onemocnění hraje zvýšená

tvorba peptidu ß-amyloidu (Aß). Aß vzniká proteolytic-

kým štěpením amyloidového prekurzorového proteinu

(APP) enzymy ß- a γ-sekretasou. Při štěpení APP vzni-

kají peptidy o délce převážně 40 a 42 aminokyselin8, 9).

Původní hypotéza tzv. amyloidní kaskády předpokládala,

že ukládání nerozpustného Aß v extracelulárním prosto-

ru je prvotní příčinou rozvoje onemocnění. Novější data

však ukazují, že nositelem toxicity jsou rozpustné formy

Aß oligomerů vyskytující se intracelulárně, jejichž

kumulace uvnitř buňky časově předchází vzniku senil-

ních plaků10–13). Na základě těchto zjištění byla upravena

původní hypotéza a výzkum se zaměřil na působení Aß
uvnitř buňky.

Stále více důkazů ukazuje na mitochondrie jako hlav-

ní místo toxicity intracelulárního Aß (obr. 1)14). Již delší
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dobu je známo, že AD je spojena s oxidativním stresem

a poškozením mitochondrií. Byly zjištěny změny v počtu

a velikosti mitochondrií15), snížení energetického meta-

bolismu16), zvýšený oxidativní stres17), poruchy homeo-

stázy vápníku18) a změny v mitochondriální DNA19). Dále

byla prokázána přítomnost Aß v mitochondriích zvířecí-

ho modelu onemocnění i u lidských pacientů a jeho

negativní dopad na jejich fungování20, 21). In vitro bylo

prokázáno, že Aß působí poškození dýchacího řetězce,

snížení membránového potenciálu, únik cytochromu C,

zvýšenou tvorbu mitochondriálního permeabilního tran-

zitního kanálu (mPTP) a zvýšenou tvorbu volných radi-

kálů22–24). Jakou cestou se Aß dostává do mitochondrií,

zatím nebylo jednoznačně zodpovězeno. Nejpravděpo-

dobnější se jeví možnost prostupu skrze transportní

kanály TOM40 (vnější mitochondriální membrána)

a TIM22 (vnitřní mitochondriální membrána)25). Další

možností je transport přes tzv. MAMs (membrány asoci-

ované s mitochondriemi), které jsou součástí endoplaz-

matického retikula26, 27).

Bylo identifikováno několik mitochondriálních enzy-

mů, které přímo interagují s Aß za ovlivnění jejich fyzio-

logické funkce, např. ABAD, CypD, GAPDH,

HtrA228–31). Mezi nimi amyloid vázající alkoholdehydro-

genasa (ABAD) se zdá být klíčovou pro rozvoj neuroto-

xicky mitochondriálního Aß21). V tomto článku jsou shr-

nuty dosavadní poznatky o tomto enzymu, jeho roli

v rozvoji AD a možnostech farmakologického ovlivnění

interakce ABAD-Aß jako perspektivním cíli pro terapii

AD.

ABAD a jeho fyziologická funkce

Enzym ABAD poprvé popsali v roce 1997 Yan et

al.28) a o rok později byl identifikován jako lidská obdo-

ba dříve objevené hovězí hydroxyacyl-CoA dehydroge-

nasy typu II32). Původně byl označen jako ERAB

(s endoplazmatickým retikulem asociovaný amyloid

vázající protein) podle kompartmentu, ve kterém byl

původně chybně identifikován. Jeho skutečná lokaliza-

ce je uvnitř mitochondriální matrix33). Enzym má ještě

další alternativní názvy jako SCHAD34), HADH II35),

17ß-HSD1036), MBHD37). Tyto názvy byly odvozeny

podle různých substrátů, jejichž přeměnu je ABAD

schopen katalyzovat.

ABAD je NAD-dependentní oxidoreduktasa patřící do

SDR (dehydrogenasy/reduktasy s krátkým řetězcem)

skupiny enzymů. Je to multifunkční enzym katalyzující

redukci aldehydů a ketonů a oxidaci alkoholů (obr. 2)38).

ABAD je poměrně málo substrátově specifický a experi-

mentálně pro něj bylo popsáno mnoho potenciálních

substrátů. Je však otázkou, které z nich enzym skutečně

přeměňuje v prostředí organismu27).

Hlavní fyziologickou funkcí ABAD je pravděpodobně

třetí krok ß-oxidace mastných kyselin s krátkým rozvět-

veným řetězcem, kde vystupuje jako L-3-hydroxyacyl-

CoA dehydrogenasa. Tomu by napovídala i lokalizace

enzymu uvnitř mitochondriální matrix39). Z hlediska

energetického metabolismu se jeví významná též schop-

nost metabolizovat ketolátky např. ß-hydroxybutyrát,

a tím dodávat buňce energii při nedostatku kyslíku40).

Účastní se též degradační cesty isoleucinu. Nesmyslná

mutace v genu kódujícím ABAD vede k poruše katabo-

lismu isoleucinu, která se klinicky projeví jako progre-

sivní ztráta mentálních a motorických schopností, men-

tální retardací a epilepsií37).

Dalšími zvažovanými funkcemi jsou oxidace a inakti-

vace estradiolu a steroidních modulátorů GABA
A

recep-

toru. Role ABAD v inaktivaci estradiolu by mohla

vysvětlit, proč AD trpí častěji ženy než muži38, 41). ABAD

je také pravděpodobně součástí mitochondriální RNAsy

P. Tato funkce nesouvisí s enzymatickou aktivitou

ABAD. RNAsa P je enzym důležitý pro správnou tvorbu

tRNA a následně i syntézu proteinů v mitochon-

driích42, 43).

Struktura a mechanismus funkce

ABAD se v buňce vyskytuje ve formě homotetrameru.

Katalytická triáda sestává z aminokyselin Ser155,

Tyr168 a Lys172 a je tedy stejná jako u ostatních enzy-

mů z SDR skupiny39). Kofaktor NAD+/NADH se váže na

enzym v blízkosti aminokyselin katalytické triády

a vytváří s nimi nevazebné interakce. Vazebné místo pro

substrát obsahuje oblast s kladně nabitými zbytky ami-

nokyselin lysinu a histidinu, se kterými interaguje zápor-

ně nabitá část substrátů obsahujících v molekule CoA.

Proto jsou substráty, které ve své molekule CoA neobsa-

hují, enzymem přeměňovány méně efektivně. Hydrofob-

ní oblast oddělující katalytickou triádu a oblast s klad-

ným nábojem je vhodně uspořádána pro interakci

s alifatickým řetězcem mastné kyseliny. Všechny tyto

skutečnosti podporují domněnku, že acyl-CoA jsou pri-

márním substrátem ABAD39, 44).

Mechanismus katalýzy lze přiblížit na příkladu reduk-
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Obr. 1. Projevy toxicity mitochondriálního ß-amyloidu

Obr. 2. Oxidace alkoholÛ a redukce ketonÛ prostfiednictvím
ABAD
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ce ketonu na alkohol. Tyr168 interaguje s karbonylovou

skupinou substrátu, čímž zvyšuje elektrofilitu karbonylo-

vého uhlíku. Amoniová skupina Lys172 interaguje

s tyrosinem za zvýšení jeho acidity. Donorem hydridu

pro vlastní redukci je kofaktor NADH. Při přenosu hyd-

ridu na aktivovaný karbonyl současně dochází k deproto-

naci Tyr168 a proton je přenesen na nově vytvořený hyd-

roxylový anion. Záporný náboj vzniklý na Tyr168 je

stabilizován vytvořením vodíkové vazby se Ser15539).

Na rozdíl od ostatních enzymů SDR skupiny obsahuje

molekula ABAD navíc dvě sekvence aminokyselin (rezi-

dua 102–107 a 141–146). Právě oblast zahrnující rezidua

102–107 a nacházející se v blízkosti aktivního centra

enzymu je místem vazby Aß21, 39, 44).

Interakce ABAD-Aß a její dÛsledky

Interakce ABAD s Aß byla poprvé prokázána v roce

1997 pomocí kvasinkového dvouhybridního systému28).

V následujících letech bylo toto zjištění potvrzeno za

použití dalších metod, např. ELISA45), krystalografie21),

SPR (surface plasmon resonance)21, 46), ko-imunoprecipi-

tace21, 28) nebo imunocytochemie následované konfokální

mikroskopií21).

Vazebným místem Aß je oblast aminokyselinových

reziduí 100–110, označovaná též jako Loop-D. Bodové

mutace v oblasti Loop-D (konkrétně rezidua 98–101

a 108–110) zabránily vazbě Aß na enzym21). Ostatní

enzymy SDR skupiny tuto oblast ve své molekule neob-

sahují39). To by vysvětlovalo, proč pouze ABAD a niko-

liv ostatní SDR enzymy interaguje s Aß.

Vazba Aß na enzym způsobí sterické změny v oblasti

vazebného místa pro kofaktor NAD+, který se pak nemů-

že na enzym vázat, a tím je inhibována jeho funkce. Na-

opak enzym s navázaným kofaktorem s Aß neinteraguje.

Ačkoliv se tedy Aß a NAD+ vážou na různá místa enzy-

mu, jejich současné navázání se vylučuje21, 46).

Aß inhibuje funkci enzymu (K
i 
= 1,2–1,6 μM) pro sub-

strát acetoacetyl-CoA47, 48). Zajímavé však je, že vazba

Aß na ABAD je popsána již při koncentracích v řádu

desítek nM28, 46). Možné vysvětlení předpokládá, že pro

inhibici enzymu nestačí navázání monomerní formy Aß,

ale je jí dosaženo až agregovanou oligomerní formou

amyloidu27).

Byly provedeny pokusy na živých buňkách, které ve

zvýšené míře exprimovaly v různých kombinacích

ABAD, enzymaticky inaktivní ABAD, Aß nebo APP. Při

těchto pokusech bylo zjištěno, že zvýšenou toxicitu

vykazoval Aß (resp. APP) pouze v těch buňkách, které

současně exprimovaly i funkční ABAD. Samotný

Aß/APP nebo v kombinaci s inaktivní formou ABAD

měl podstatně nižší toxické účinky. Z toho lze usuzovat,

že toxicita Aß nespočívá v inhibici enzymu, ale ve změ-

ně jeho vlastností (např. funkce nebo lokalizace). Nosite-

lem toxicity je tedy katalyticky aktivní enzym po navá-

zání Aß, čemuž by odpovídalo i výše zmíněné zjištění, že

vazba Aß na enzym probíhá již v o dva řády nižších kon-

centracích, než jaká je potřebná k jeho inhibici47). Při

jiném experimentu potvrzujícím tuto domněnku vedlo

podání protilátek proti ABAD ke snížení toxicity Aß28).

Proteomické studie odhalily dva proteiny, jejichž

exprese se zvyšuje v důsledku interakce ABAD-Aß.

Peroxiredoxin II je antioxidačně působící enzym a jeho

zvýšená exprese působí protektivně proti toxickým účin-

kům Aß49). Druhý z proteinů, endofilin I (EP-I), působí

naopak cytotoxicky, když aktivuje proapoptotickou sig-

nální kaskádu50, 51).

Mechanismus toxicity komplexu ABAD-Aß

Mechanismus, kterým Aß po navázání na ABAD roz-

víjí svoji neurotoxicitu, není dosud znám, avšak existuje

několik teorií. Nejčastěji zmiňovaná teorie předpokládá,

že ABAD po navázání Aß produkuje toxické aldehydy

HNE (4-hydroxynonenal) a MDA (malondialdehyd),

které za normálních okolností naopak detoxikuje. Tato

teorie je podpořena výsledky experimentů na buněčných

liniích. V nich pouze buňky, které exprimovaly katalytic-

ky aktivní ABAD a současně Aß, vykazovaly zvýšenou

tvorbu HNE a MDA. Naopak buňky exprimující pouze

ABAD vykazovaly zvýšenou odolnost proti toxickým

účinkům těchto aldehydů. K tomu může docházet buď na

základě změny funkce enzymu, anebo změny distribuce

enzymu, jenž následně dostane možnost metabolizovat

substráty z jiných kompartmentů47, 52, 53).

Jiná teorie předpokládá, že ABAD po interakci s Aß ve

zvýšené míře metabolizuje hormon estradiol, ať už vinou

změny distribuce enzymu, nebo v důsledku jeho zvýšené

exprese a následně i aktivity36). Bylo prokázáno, že estra-

diol působí protektivně vůči toxickým účinkům Aß a jeho

preventivní podávání snižuje riziko onemocnění AD54).

Další možností je poškození funkce mitochondriální

RNAsy P, které je ABAD součástí. To by narušilo synté-

zu mitochondriálních proteinů, včetně součástí dýchací-

ho řetězce, s následným poškozením energetického

metabolismu buňky42, 43).

V neposlední řadě může být toxicita interakce ABAD-

-Aß zprostředkována proteinem EP-I, jehož exprese je

v důsledku této interakce zvýšená. EP-I aktivuje enzym

JNK (c-Jun N-terminální kinasa), který je součástí pro-

apoptotické signální kaskády, což může v konečném

důsledku vést až k zániku buňky. Zvýšená aktivace JNK

je spojována s patologií AD již delší dobu a protein Ep-I

se tak zdá být možným propojením mezi ní a působením

Aß50, 51).

Ovlivnûní interakce ABAD-Aß jako potenciální cíl
terapie AD

Pro ověření, zda je Loop-D skutečně místem vazby

Aß a zda její přerušení sníží toxicitu, byl syntetizován

tzv. ABAD-návnadový peptid (ABAD-decoy peptide;

ABAD-DP), jehož aminokyselinová sekvence (rezidua

92–120) oblast Loop-D zahrnuje. Předpokládalo se, že

ABAD-DP vyváže Aß, a tím ochrání vlastní enzym.

Peptid blokoval vazbu ABAD-Aß s K
i

v řádu jedno-

tek μM. K
d 
pro komplex Aß s ABAD-DP byla podobná

jako pro ABAD-Aß. Při pokusech na buněčných liniích,

které byly vystaveny působení Aß, snížilo podání

ABAD-DP tvorbu volných radikálů, uvolňování cyto-

chromu C z mitochondrií a zvýšilo životaschopnost

buněk21). Systémová léčba pomocí ABAD-DP (obohace-

ného o aminokyselinové sekvence umožňující přechod

přes membrány a vstup do mitochondrií) u zvířecího
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modelu AD zlepšila kognitivní schopnosti v porovnání

s neléčenou skupinou55). Na základě výše uvedených

údajů se jeví interakce ABAD-Aß jako perspektivní cíl

pro farmakoterapeutický zásah.

ABAD-DP je jako peptid svým charakterem nevhod-

ný pro běžnou léčbu. Peptidy jsou málo dostupné po

perorálním podání a v organismu mají nízkou stabilitu.

Je proto snaha nalézt nízkomolekulární látky schopné

inhibovat interakci ABAD-Aß. První výsledky v této

oblasti publikoval Xie et al.45).

Byl proveden screening skupiny 50 látek, o nichž se

vědělo, že interagují buď s Aß, nebo s ABAD, anebo

působí neuroprotektivně, na schopnost inhibovat interak-

ci ABAD-Aß. Aktivitu vykázaly tři sloučeniny: Aß váží-

cí barviva Kongo červeň a thioflavin-T a neuroprotektiv-

ní látka resveratrol. Jako nejvhodnější kandidát pro další

zkoumání byl vybrán thioflavin-T pro svou nízkou toxi-

citu a dobrý průnik přes biologické membrány. Při

následném screeningu analogických struktur byla obje-

vena účinnější látka frentizol, známé imunosupresivum

a antivirotikum používané například k léčbě revmatické

artritidy. Na základě předlohové molekuly frentizolu

byla připravena a otestována série jeho strukturních ana-

logů, z nichž dva nejúčinnější vykazovaly 30× vyšší inhi-

biční aktivitu vůči ABAD ve srovnání s frentizolem

(obr. 3)45). Zatím však nebylo prokázáno, zda jsou inhi-

biční vlastnosti těchto látek specifické pro vazbu ABAD-

Aß a zda jsou schopné snižovat toxicitu Aß.

Jinou možností jak zabránit ß-amyloidem indukované

neurotoxicitě je inhibovat katalytickou funkci ABAD,

která se pro ni jeví jako nezbytná. Tento přístup je však

méně specifický pro vlastní onemocnění a bude jím

ovlivněna i fyziologická funkce enzymu, což by se moh-

lo projevit v podobě nežádoucích účinků. Za tímto úče-

lem byla testována sloučenina AG18051 (obr. 4)44, 56).

AG18051 je specifický inhibitor ABAD, který nemá

strukturní podobnost se žádným ze známých substrátů.

Váže se na aktivní místo enzymu, kde se orientuje do

oblasti vazebného místa pro substrát a vytváří kovalentní

vazbu s kofaktorem NAD+ (obr. 5). Na živých buňkách

bylo potvrzeno, že inhibice ABAD pomocí AG18051

snižuje toxicitu Aß. Bylo též prokázáno, že AG18051

částečně brání vazbě Aß na ABAD. Vzhledem k mecha-

nismu inhibice odpovídá toto zjištění výše zmíněné sku-

tečnosti, že současná vazba kofaktoru a Aß na enzym se

vylučuje. Schopnost inhibovat vazbu ABAD-Aß tak

pravděpodobně přispívá k neuroprotektivním účinkům

AG1805144, 56).

Závûr

ABAD je dosud nejlépe prozkoumaným intracelulár-

ním proteinem interagujícím s Aß. Přímá vazba Aß na

tento mitochondriální enzym byla jednoznačně prokázá-

na pomocí různých metod. Interakce ABAD-Aß vede

k poškození mitochondrií typickému pro AD. Inhibice

této interakce tedy představuje perspektivní cíl pro tera-

pii AD, což bylo potvrzeno za použití ABAD-DP. První

pokusy o nalezení nízkomolekulárního inhibitoru vedly

k syntéze série derivátů frentizolu. Pro další vývoj léčiv

tohoto typu je však nezbytné hlouběji porozumět podsta-

tě interakce ABAD-Aß a zjistit přesný mechanismus její-

ho toxického působení.

Stfiet zájmÛ: žádný.

Literatura

1. Price D. L., Sisodia S. S.:Mutant genes in familial Alzheimer’s

disease and transgenic models. Annu. Rev. Neurosci. 1998; 21,

479–505.

2. Selkoe D. J. Translating cell biology into therapeutic advances in

Alzheimer’s disease. Nature. 1999; 399(Suppl), A23–31.

Čes. slov. Farm. 2012; 61, 144–149 147
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