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Podrodina CYP3A

CYP3A podrodina predstavuje u človeka najrozšíre-
nejšiu a dôležitú skupinu metabolických enzýmov, kto-
rou sa metabolizuje viac než 50 % všetkých liečiv.
CYP3A podrodina pozostáva zo 4 členov: CYP3A4,
CYP3A5, CYP3A7 a nedávno objaveného CYP3A43
(úloha zatiaľ nie je jasná, zdá sa však, že je exprimovaný
hlavne extrahepatálne). CYP3A7 je vyjadrený hlavne
počas fetálneho obdobia, nízké hladiny tohto enzýmu
však boli detekované i v pečeni dospelých ľudí1). Zo 4
definovaných enzýmov CYP3A podrodiny sú CYP3A4
a CYP3A5 hlavnými enzýmami zodpovednými za meta-
bolizmus liečiv, majú približne 84% podobnosť
v sekvencii aminokyselín a mnoho spoločných substrá-

tov2). Enzým CYP3A5 sa nachádza len u 10–30 % ľudí
v pečeni, pokiaľ je však exprimovaný môže tvoriť až
50 % celkového množstva CYP3A v pečeni3). Doteraz
bolo nájdených viac než 40 variantných aliel CYP3A4,
otázka genetického polymorfizmu u CYP3A4 však nie je
jednoznačná (tab. 1). Najviac študovaným polymorfiz-
mom u CYP3A4 je mutácia CYP3A4*1B s frekvenciou
výskytu v 3,6 % u belošskej populácie a v 54,6 % u čer-
nochov. Táto mutácia nebola nájdená u Číňanov a Japon-
cov. Efekt alely CYP3A4*1B na aktivitu CYP3A4 je ale
kontroverzný4, 5). Naproti tomu, enzým CYP3A5 je spo-
jený s výskytom určitých variantných aliel, u ktorých bol
preukázaný podiel na rozdielnej metabolickej aktivite.
Variantné alely CYP3A5*3 a *6 sú späté s absenciou
funkčného enzýmu CYP3A5, ich výskyt je v belošskej
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Clinical significance of cytochrome P450 genetic polymorphism – part IV. Cytochrome P450
3A4 and 3A5
The enzymes of cytochrome P450 3A subfamily are responsible for the metabolism of about 50%
of commonly used drugs. High inter-individual variability in the activities of these enzymes has
been described. The last fourth part of this review focuses on the influence of genetic polymorphism
of CYP3A4 and CYP3A5 enzymes on drug effect.
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populácii pomerne vysoký, naopak oveľa nižšie je ich
zastúpenie u africkej populácie, ktorá je spojovaná
s rýchlejšou elimináciou CYP3A5 substrátov6, 7). 

Imunosupresíva

Najviac prací zaoberajúcich sa polymorfizmom
CYP3A sa týka imunosupresívnych látok cyklo-
sporínu A a takrolimu. Min a Ellingrod zistili, že orálna
clearance cyklosporínu A bola vyššia u CYP3A4*1B
homozygotov v porovnaní s CYP3A4*1/*1 (prirodze-
ným) genotypom. Tieto pozorovania naznačujú vyššiu
expresiu CYP3A4 u pacientov nesúcich CYP3A4*1B ale-
lu. Samotní autori však upozorňujú, že štúdia sa týkala 14
zdravých dobrovoľníkov a väčšina z nich bola afrického
pôvodu, je preto potreba určitej opatrnosti pri aplikácii
týchto výsledkov do klinickej praxe9). Hesselink a kol.
popisovali vo svojej štúdii farmakokinetiku cyklosporínu
A u pacientov s transplantovaným srdcom a ľadvinou. Zis-
tili, že nositelia CYP3A4*1B alely mali síce významnú
ale len o 9 % vyššiu orálnu clearance cyklosporínu
A v porovnaní s CYP3A4*1 homozygotmi10). Iné práce
nenašli rozdiely v koncentrácii či v clearance cyklosporí-
nu A u pacientov po translantácii v závislosti na prítom-
nosti/neprítomnosti variantnej alely CYP3A4*1B11–13).
Podobne i práce zaoberajúce sa vplyvom CYP3A5 poly-
morfizmu na farmakokinetiku cyklosporínu A sú značne
nejednotné. V práci na zdravých dobrovoľníkoch bola
AUC cyklosporínu A významne vyššia a clearance nižšia
u homozygotov pre variantnú alelu CYP3A5*3 v porov-
naní s homozygotmi pre wild type alelu CYP3A5*114).
Významný rozdiel medzi CYP3A5 genotypom bol nájde-
ný i u renálne transplantovaných pacientov, pacienti
s *3/*3 genotypom mali približne o 30 % vyššie hladiny
cyklosporínu A pred užitím vztiahnuté na dávku počas
prvého mesiaca po transplantácii15). Tento rozdiel nebol
pozorovaný v ďalších prácach u belošských16–18) a ázij-
ských renálne transplantovaných pacientoch19–21). Para-
doxne opačné výsledky boli publikované v dvoch prácach,
kde bola koncentrácia cyklosporínu A pred užitím vyššia
a orálna clearance nižšia u CYP3A5 (*1/*1) expresorov22,

23). U ázijskej populácie bola objavená nová variantná ale-
la CYP3A4*18B s frekvenciu výskytu okolo 30 %24).
V štúdiách na zdravých dobrovoľníkoch bola AUC cyklo-
sporínu A významne nižšia a clearance vyššia u homozy-
gotov CYP3A4*18/*18 v porovnaní s heterozygotmi
a homozygotmi pre wild type alelu CYP3A4*125, 26).
Pacienti po renálnej transplantácii s genotypom
CYP3A4*1/*1 mali významne vyššie koncentrácie cyklo-

sporínu A pred (o cca 40 %) a za 2 hod. po užití (o cca
20–35 %) vztiahnuté na dávku než pacienti s genotypom
CYP3A4*18/*18 v krátkej dobe po transplantácii15). Štú-
dií skúmajúcich vplyv CYP3A4 genotypu na farmakody-
namiku cyklosporínu A je menej v porovnaní s farmako-
kinetickými. Retrospektívne i prospektívne práce
u belošských pacientov po transplantácii ľadviny nenašli
vzťah mezdi CYP3A4 genotypom a výskytom biopsiou
preukázanej akútnej rejekcie či rozdiel v renálnych funk-
ciách medzi genotypmi12, 27). Podobné výsledky priniesly
i ďalšie štúdie sledujúce vplyv CYP3A5 genotypu na
výskyt akútnej rejekcie a na renálne funkcie u transplanto-
vaných pacientov užívajúcich cyklosporín A27, 28). V ne-
meckej štúdii zahrnujúcej 399 renálne transplantovanách
pacientov s dobou sledovania v priemere 8,6 rokov, mali
pacienti s aspoň jednou CYP3A5*1 alelou vyššie celkové
prežitie a prežitie po zlyhaní graftu v porovnaní s pacient-
mi s genotypom CYP3A5*3/*3. Jednou z autorových
hypotéz je, že expresia CYP3A5 enzýmu má protektívny
charakter v dôsledku ďalšieho podielu na metabolizme
cyklosporínu A29). 

Výsledky štúdií s takrolimom vo vzťahu k CYP3A4
genotypu taktiež nemajú jednoznačné závery. V štúdii
Hesselinka a kol. porovnávali koncentráciu takrolimu
v krvi medzi homozygotmi a heterozygotmi pre variant-
nú alelu CYP3A4*1B s genotypom CYP3A4*1/*1.
Genotyp CYP3A4*1B viedol k nižším koncentráciám
takrolimu v krvi oproti genotypu CYP3A4*1/*113).
V ďalšej skupine renálne transplantovaných pacientov
mali heterozygoti pre CYP3A4 *1B alelu vyššie dávky
takrolimu v porovnaní s homozygotmi pre wild type ale-
lu CYP3A5*1 v rannej dobe po transplantácii, hodnoty
farmakokinetických parametrov takrolimu sa však
významne nelíšili medzi skupinami30). Pozorovaná kore-
lácia medzi CYP3A4 genotypom a koncentráciou takro-
limu by mohla súvisieť s rozdielnou expresiou enzýmu
CYP3A5. Prítomnosť CYP3A4*1B alely je spojená
s výskytom CYP3A5*1 alely, takže skôr rozdiely v akti-
vite CYP3A5 než CYP3A4 by mohli vysvetľovať roz-
dielne požiadavky v dávkovaní takrolimu. Na rozdiel od
cyklosporínu presvedčivé údaje boli získané zo štúdií,
ktoré sledovali vzťah medzi CYP3A5 polymorfizmom
a farmakokinetikou takrolimu u pacientov po transplan-
tácii ľadvín, srdca, pľúc a pečene. Takmer všetky štúdie
zaznamenali vyššiu expozíciu takrolimom a potrebu niž-
šej dávky u pacientov, ktorí boli nositeľmi aspoň jednej
CYP3A5*3 variantnej alely. Naopak expresori enzýmu
CYP3A5 (genotyp *1/*1) potrebovali vyššie dávky tak-
rolimu (približne dvojnásobné) v porovnaní s non-expre-

Tab. 1. Aktivita variantnych aliel CYP3A4 a CYP3A5 in vivo a v˘skyt v populácii4, 5, 7, 8)

Alela Enzymatická aktivita 
Frekvencia výyskytu v populácii (%) 

belošská ázijská africko-americká

CYP3A4*1 normálna – – –
CYP3A4*1B znížená? 3,6 0 54,6
CYP3A5*1 normálna 5–15 23 45
CYP3A5*3 takmer žiadna 95 73 27
CYP3A5*6 takmer žiadna < 0,1 0 8
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sormi CYP3A5 enzýmu (genotyp *3/*3)13, 19, 20, 30, 32–36).
Jedinci majúci CYP3A5*1 alelu dosahovali po trans-
plantácii oneskorene cieľové hladiny Tac v krvi v porov-
naní s non-expresormi CYP3A5 enzýmu37, 38). Napriek
silnej asociácii medzi CYP3A5 polymorfizmom a hladi-
nou takrolimu, nemožno tento vzťah jednoznačne spájať
s účinkom takrolimu. CYP3A5 polymorfizmus nemal
žiaden vplyv na výskyt biopsiou overenej akútnej rejek-
cie u pacientov po transplantácii ľadviny a pľúc v nasle-
dujúcich štúdiach39–41). Vyššie riziko akútnej rejekcie
u renálne transplantovaných pacientoch bolo pozorované
u pacientov heterozygotov a homozygotov pre
CYP3A5*1 variantnú alelu v týchto prácach42, 43). Akútna
rejekcia sa vyskytla za kratšiu dobu od transplantácie
(priemerný čas 7 dní versus 13 dní) u pacietnov s geno-
typom CYP3A5*1/*1 (expresori) v porovnaní s pacien-
tami s genotypom CYP3A5*3/*337). Vyšší výskyt nefro-
toxicity bol nájdený u pacientov, ktorí boli homozygoti
pre CYP3A5*3 variantnú alelu (47 % versus 17 %) v štú-
dii u japonských pacientov po transplantácii pečene44).
V práci Kuypers a kol. bol vyšší výskyt takrolimom
navodenej nefrotoxicity pozorovaný u pacientov s kom-
bináciou genotypu CYP3A4*1/3A5*1 a CYP3A4*
1B/3A5*145). Iné práce rozdielny výskyt nefrotoxicity
u pacientov užívajúcich takrolimus v závislosti na
CYP3A5 genotype nepreukázali28, 42, 46). 

Imumosupresívum sirolimus je podobne ako inhibitó-
ry kalcineurínu substrátom enzýmov cytochrómu P450
3A. Anglicheau a kol. sledovali na skupine 149 renálne
transplantovaných pacientov vplyv variantnej alely
CYP3A4*1B a CYP3A5*3 na koncentráciu sirolimu tre-
tí mesiac po transplantácii. Pacienti boli rozdelení do
troch skupín: 1. skupina pacientov, u ktorých bol siroli-
mus užívaný v režime spolu s inhibítorom kalcineurínu;
2. pacienti, u ktorých bol sirolimus užívaný v režime bez
inhibítora kalcineurínu a 3. skupina pacientov, u ktorých
došlo k prevedeniu na sirolimus z dôvodu suspektnej kal-
cineurínovej nefrotoxicity. Významná asociácia bola
pozorovaná iba v tretej skupine pacientov, kde pacienti
majúci alelu CYP3A4*1B alebo CYP3A5*1 vyžadovali
významne vyššie dávky sirolimu, aby dosiahli adekvátne
koncetrácie v krvi47). Tieto výsledky boli potvrdené i ďal-
šími prácami, kde pacienti, ktorí exprimovali enzým
CYP3A5 (nositelia aspoň 1 variantnej alely CYP3A5*1)
mali významne vyššiu clearance a nižšie hladiny siroli-
mu a potrebovali vyššie dávky sirolimu v porovnaní
s pacientmi s genotypom CYP3A5*3/*348–51). Všetci
pacienti dostávali sirolimus v režime bez inhibítora kal-
cineurínu. Naopak, v kohorte 85 pacientov po transplan-
tácii ľadviny autori nenašli rozdiel v koncentrácii a dáv-
ke sirolimu medzi expresormi a non-expresormi enzýmu
CYP3A552). 

Benzodiazepíny

Enzým CYP3A sa podieľa na tvorbe 2 hlavných meta-
bolitov midazolamu, 1’-hydroxymidazolamu a 4-hydro-
xymidazolamu, kde prvý z nich je tvorený hlavne prost-
redníctvom formy CYP3A553). Výsledky prácí
zaoberajúcich sa vplyvom CYP3A5 genotypu na farma-
kokinetiku midazolamu nie sú jednotné. In vitro štúdie

preukázali zvýšenú clearance midazolamu u nositeľov
aspoň jednej alelu CYP3A5*1 v porovnaní s nositeľmi 2
variantných aleliel CYP3A5*354, 55). Priemerne 1,3-ná-
sobne a 1,7-násobne vyššia clearance midazolamu bola
pozorovaná u nositeľov aspoň 1 alely CYP3A5*1
v dvoch in vivo štúdiách u onkologických pacientov, kto-
rým bol midazolam podaný ako substrátová látka56, 57).
Iné in vivo štúdie na zdravých dobrovoľníkoch naopak
nenašli významné rozdiely vo farmakokinetike midazo-
lamu medzi CYP3A genotypovými skupinami58–61).
Podobne nebol rozdiel vo farmakokinetike a účinku
midazolamu zaznamenaný ani u pacientov, ktorým bol
midazolam aplikovaný v rámci sedácie na jednotke
intenzívnej starostlivosti62). Enzým CYP3A4 sa v hlavnej
miere podieľa na tvorbe 4-hydroxyalprazolamu, tvorba
α-hydroxyalprazolamu je sprostredkovaná hlavne enzý-
mom CYP3A563). Park a kol. študovali efekt CYP3A5
genotypu na farmakokinetiku alprazolamu u zdravých
dobrovoľníkoch po užití jednorázovej dávky. Priemerná
koncentrácia a AUC alprazolamu bola významne vyššia
u homozygotov pre variantnú alelu CYP3A5*3 v porov-
naní s nositeľmi aspoň jednej alely CYP3A5*164).

Statíny

Prítomnosť variantnej CYP3A alely bola študovaná
i v spojovaní s hypolipidemickým účinkom statínov, no
výsledky prací sú dosť rozporuplné. Jedinci, ktorí expri-
movali enzým CYP3A (CYP3A5*1/*1), mali významne
nižšiu AUC a vyššiu clearance simvastatínu v porovnaní
s non-expresormi emzýmu (CYP3A5*3*/*3) 65). V práci
Kivistö a kol. sledovali vplyv expresie enzýmu CYP3A5
na hypolipidemickú odpoveď u pacientov užívajúcich
atorvastatín, lovastatín a simvastatín. Po 1 roku liečby
bola priemerná celková koncentrácia cholesterolu
a LDL-cholesterolu u CYP3A5 expresorov o 23 %, resp.
24 % vyššia v porovnaní s non-expresormi66). V ďalšej
práci nebola nájdená významná asociácia medzi prítom-
nosťou/neprítomnosťou variantných aliel CYP3A5*3
a CYP3A4*1B a účinkom a tolerabilitou simvastatínu67).
V práci Willrich a kol bola alela CYP3A5*3A spojována
naopak s nižším hypolipidemickým účinkom atorvastatí-
nu68). Vyššie hladiny LDL-cholesterolu boli taktiež
nájdené u pacientov, ktorí boli homozygoti pre variantnú
alelu CYP3A4*1B, avšak rozdiely v absolútnej zmene
LDL-cholesterolu neboli štatisticky významné69). Frek-
vencia CYP3A5*3 variantnej alely bola zrovnateľná
medzi pacientmi užívajúcimi atorvastatín, u ktorých sa
objavili či neobjavili nežiadúce účinky (svalová bolesť,
elevácia kreatinkinázy). Avšak závažnosť svalového
poškodenia bola vyššia u homozygotov pre variantnú
alelu CYP3A5*370).

Inhibítory HIV proteázy

Subrodina cyochrómu CYP3A sa podieľa na metabo-
lizme inhibítorov HIV proteázy. Prítomnosť CYP3A5
genotypu bola sledovaná u farmakokinetiky antivirotika
saquinaviru. Fröhlich a kol nepozorovali rozdiely vo far-
makokinetike saquinaviru (tmax, cmax, AUC a t1/2) medzi
homozygotmi a heterozygotmi pre variantú alelu
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CYP3A5*3, našli však významný rozdiel v 24-hodino-
vom metabolickom pomere saquinaviru k jeho hydroxy
metabolitom M2 a M3 v moči medzi sledovanými geno-
typovými skupinami71). Takmer dvojnásobne vyššia cle-
arance saquinaviru bola nájdená v práci u 6 zdravých
dobrovoľníkoch exprimujúcich enzým CYP3A5 (homo-
zygoti pre variantnú alelu CYP3A5*1) v porovnaní
s jedincami, kterí tento enzým neexprimovali72). Trend
k nižššej expozícii saquinarom u jedincov exprimujúcich
enzým CYP3A5 (medián AUC0–24 o 34 % nižšií) bol
pozorovaný v práci Josephson a kol., týto jedinci mali
tiež významne nižší metabolický pomer
saquinavir/M2+M373). Treba však podotknúť, že sa saqu-
inavir z dôvodu nízkej dostupnosti, na základe doporu-
čovaných režimov podáva výhradne v kombinácii s rito-
navirom (booster, inhibítor CYP3A), pozorované
rozdiely v kinetike samotného saquinaviru medzi geno-
typovými skupinami v hore uvedených prácach, by sa po
pridaní ritonaviru mohli významne znížiť. To potvrdzuje
práca Solasa a kol., v ktorej bola clearance ďalšieho inhi-
bítora HIV proteázy indinaviru o 31 % nižšia u pacien-

tov majúcich genotyp CYP3A5*3/*3 (non-expresori
enzýmu), po pridaní ritonaviru sa rozdiely medzi skupi-
nami stratili74). Významne nižšie hladiny (Cmax) indinavi-
ru pretrvávali u pacientov s genotypom
CYP3A4*1B/*1B i po pridaní ritonaviru, avšak bez
významného klinického efektu75). V retrospetkívnej štú-
dii u 33 pacientov užívajúcich indinavir v kombinácii so
zidovudinom a lamivudinom, mali expresori enzýmu
CYP3A5 (nositelia aspoň jednej CYP3A5*1 alely)
o 44 % vyššiu clearance indinaviru v porovaní s pacien-
tami non-expresormi76). Významne vyššia clearance
(1,39-krát) a približne polovičná koncentrácia (Cmin) bola
pozorovaná u ďalšieho inhibítora HIV proteázy atazana-
viru v skupine ne-afrických američanov, ktorí boli nosi-
telia aspoň 1 alely CYP3A5*1 (expresori). Po pridaní
ritonaviru k atazanaviru sa rozdiely medzi skupinami
znížili, avšak medzi mužmi ne-afrického pôvodu stále
pretrvávali77). 

ZÁVER

Enzýmy podrodiny cytochrómu P450 3A majú
významný podiel na biotransformácii mnohých liečiv.
Aktivita týchto enzýmov je značne variabilná. Význam
genetického polymorfizmu je u enzýmu CYP3A4 otáz-
ny. Naopak vplyv polymorfizmu enzýmu CYP3A5 sa
zdá byť u niektorých liečiv významný. Negenetické fak-
tory však naďalej zohrávajú na variabilnej aktivite týchto
enzýmov významný úlohu. 
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