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SOUHRN
Metody umélé inteligence: Novy trend ve farmacii

Umélé neuronové sit€ (ANN) jsou spolu s genetickymi algoritmy jednou z mnoha metod fazenych do skupiny
metod umélé inteligence. Jejich aplikaci na farmaceutickd data je mozné ziskat informace o vnitini struktufe
téchto dat, vytvofit model (tzv. adaptovat umélou neuronovou sit), ¢i v nékterych piipadech extrahovat pravidla,
na jejichz zdkladé jsou data uspofadana. S pomoci adaptované ANN je dokonce mozné predikovat tato data i pro
latky, které nebyly pouzity v adaptacni fazi. ANN maji obrovsky potencidl ve farmaceutickém vyzkumu, inter-
pretaci analytickych, farmakokinetickych ¢i toxikologickych dat.
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SUMMARY
Methods of Artificial Intelligence: A New Trend in Pharmacy

Artificial neural networks (ANN) and genetic algorithms are one group of methods called artificial intelligence.
The application of ANN on pharmaceutical data can lead to an understanding of the inner structure of data and
a possibility to build a model (adaptation). In addition, for certain cases it is possible to extract rules from data.
The adapted ANN is prepared for the prediction of properties of compounds which were not used in the
adaptation phase. The applications of ANN have great potential in pharmaceutical industry and in the

interpretation of analytical, pharmacokinetic or toxicological data.
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Vyvoj nového 1éku je v dneSni dobé velmi dlouhym
a finan¢né velmi naronym procesem. Celkové ndklady
na vyvoj komeréné dostupného léku ve Spojenych sta-
tech americkych jsou odhadovany na 359 milionti dolart
a délka tohoto vyvoje predstavuje vice nez 10 let.
Z pocatecniho poctu 5000 testovanych litek je nakonec
jedina uvedena na trh. Ostatni jsou vyfazeny bud v pred-
klinickych testech (in vitro, in vivo, 1-3 roky), nebo pak
ve druhé fazi, kdy je na lidech testoviana bezpecnost
(nékolik mésict), kratkodobé podavani (vice neZ 2 roky)
a nakonec bezpecnost, davkovani a ucinnost latky. Kli-
nické testy vyfadi ptfes 80 % vsech latek. Poslednim kro-
kem pred uvedenim na trh je schvalovani organem U.S.
Food and Drug Adminstration na zakladé dat ziskanych
od vyrobce. I po uvedeni na trh je 1é¢ivo stile pod dohle-
dem b2,

Je zfejmé, Ze naklady a Cas potiebny k vyvoji 1éCiva
jsou velmi vysoké. Jakékoliv zlepSeni tohoto procesu

znamend znacnou usporu finan¢nich prostredkt a diivej-
§i uvedeni pripravku na trh. Vybér vhodnych latek pro
prvni fazi neprobiha nahodné, ale byva pouzita celd fada
statistickych metod. Zejména se jedna o prohledavani
knihoven sloucenin, modelovani vztahu mezi strukturou
a biologickou aktivitou latky (structure-activity rela-
tionship — SAR; quantitative-SAR — QSAR) a o predikci
absorpce, distribuce, metabolizmu a exkrece (adsorption,
distribution, metabolism and excretion — ADME). Jedné-
mi z perspektivnich metod pro tento ucel jsou metody
umélé inteligence.

Pojem uméla inteligence (artificial inteligence — Al)
byl definovdn Marvinem Minskym jako ,,véda, zabyvaji-
ci se tim jak prinutit stroje projevovat se takovym chova-
nim, které by v pfipad¢ clovéka vykazovalo potiebu inte-
ligence*“ ?. Pro posuzovani toho, zda je stroj inteligentni
¢i nikoliv, byl pfed vice neZ pil stoletim navrzen Alanem
Turingem test ¥. Zkracené& se jednd o to, Ze stroj i clovék
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Obr. 1. Srovndni funkce biologického a umélého neuronu
(dle 34).

odpovidaji na otizky a nezucastnény pozorovatel ma
urcit, které odpovédi pochazeji od stroje a které od ¢lo-
véka. Vzhledem k tomu, Ze se jednd pouze o jednu
z oblasti lidského mySleni, je tento test stale modifikovan
arozvijen. Mezi metody UI patii kromé jinych také umé-
Ié neuronové sit€ (artificial neural network — ANN),
expertni systémy a genetické algoritmy. Tyto tfi oblasti
jsou nejvice pouzivany v ptirodnich védach.

Umélé neuronové sité byly navrZeny jako vypocetni
systém kopirujici svou biologickou pfedlohu — mozek.
Ten obsahuje kolem 10! neurond a 10 spoji mezi
nimi. Vzhledem ke sloZitosti a netiplné objasnénosti
déji v ném probihajicich simuluji ANN pouze nékteré
z nich. I to vSak stac¢i k tomu, aby bylo mozné ANN
Lnau€it* ¢i adaptovat na konkrétni teSeny ukol
a ndsledné ji vyuZzit k vypoctu (,,predikci®). Z matema-
tického hlediska se tedy jednd o vytvorfeni modelu
a jeho naslednou aplikaci.

Stejné jako se mozek sklada z neurond, propojenych
vhodnym zplisobem synapsemi, je téZ ANN sestavena ze
vzajemné propojenych vypocetnich jednotek — umélych
neurond (artificial neuron — AN). Na obrdzku 1 je porov-
nani biologického a umélého neuronu. V nejcastéji pou-
Zivanych typech ANN jsou umélé neurony poskladany
do vrstev. Ty mohou slouzit ke vstupu dat (vstupni vrst-
va), k vlastnim vypoctim (jedna ¢i vice skrytych vrstev)
a konec¢né k jejich vystupu (vystupni vrstva). Pfitomnost
a pocet skrytych vrstev ve struktufe ANN zavisi na jejim
typu a téZ i na sloZitosti feSeného problému. Pocet AN
v jednotlivych vrstvach je dan: pro vstupni ¢i vystupni
vrstvu poctem vstupnich respektive vystupnich paramet-
ri feSeného tkolu; pocet neurond v jednotlivych skry-
tych vrstvach zéavisi na komplexnosti pouZzitych dat.

Umély neuron je vypocetni jednotka, ve které dochazi
k transformaci vstupnich signald na vystupni. V prvni
fazi se provede soucet hodnot vstupnich signalti. Vzhle-
dem k tomu, Ze v mozku maji signdly stejné hodnoty po
projiti riznymi spoji mezi neurony riznou urovein, byla
tato mySlenka implementovéana tézZ do ANN. Kazdy spoj
mezi AN v umélé neuronové siti je podle své vyznam-
nosti zatiZen jistym vdhovym koeficientem, kterym se
uroveil prochdzejiciho signdlu ndsobi. V. AN dochizi
tedy k souCtu vdzenych vstupnich hodnot. Presidhne-li
hodnota tohoto souctu tzv. prahovou hodnotu (dGroven
Sumu), je transformovana pomoci tzv. pfechodové funk-
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Obr. 2. Priibéh sigmoidni prechodové funkce

ce na vystupni hodnotu. Pfechodové funkce musi splio-
vat celou fadu kritérii, jako jsou jeji spojitost ¢i mono-
ténnost v celém rozsahu redlnych cisel. V drtivé vétSing
je pouZivana sigmoidni funkce [1] (obr. 2).

0= —— (1]

Kde 6, je pfechodové funkce neuronu j, e zdklad pii-
rozeného logaritmu, w,; véhové koeficienty spojeni neu-
ronu i pfedchozi vrstvy s neuronem j, x vystupni hodno-
ty neuronu pfedchozi vrstvy a b je troven Sumu Ci
prahovd hodnota neuronu. Vystupni hodnota je opét
rozeslana vazenymi spojenimi do umélych neuront
v nésledujici vrstvé. Diky tomu je vypocetni proces ANN
nazyvan paralelné distribuovany (PDP).

V soucasné dobé dochazi k implementaci PDP, a tim
i k rapidnimu zrychleni vypoctd pfi tvorbé nékterych
pocitacovych program, ale také jiz byly vyvinuty prvni
pocitace s PDP.

Prdce s ANN

Jak jiz bylo uvedeno v pfedchozim textu, je ANN nej-
Castéji sloZzena ze vzdjemné propojenych a do vrstev
seskupenych umélych neuronti. Prace s umélou neurono-
vou siti ma dvé zakladni faze. Ta prvni je adaptacni, kdy
ANN je za pouziti urcitého algoritmu adaptovdna na
konkrétni problém, zatimco druha slouZi jiz jen k vypo-
¢tu. Je ziejmé, Ze zde existuje celd fada zplsobl propo-
jeni AN a téZ i mnoho adaptacnich algoritmii. Nejbéz-
néjSim kritériem ke kategorizaci ANN je adaptacni
algoritmus.

Adaptace ANN znamena ve skutecnosti hledani vhod-
nych vahovych koeficient, prahovych hodnot a jeji
topologie. Ackoliv by se mohlo zdat, Ze se hled4 pouze
jedind kombinace hodnot, praxe ukazuje, Ze pocet ANN
feSicich spravné dany problém je prakticky neomezeny.
Vzhledem k velkému poctu proménnych neni efektivni
pouZzit ndhodny nesystematicky postup, a proto k jejich
nalezeni byla vyvinuta celd fada sofistikovanych postu-
pi. Obecné Ize rozdélit ANN dle adaptacnich algoritmi
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na ty, kde data obsahuji pouze vstupni veli¢iny — ,,adap-
tace bez ucitele”, a ty, kde data obsahuji i vystupni veli-
¢iny — ,,adaptace s ucitelem®.

Adaptace ,,bez ucitele‘

Adaptace ,bez ucitele” (unsupervised learning) se
pouZziva zejména v metodach, které jsou analogické kla-
sickym statistickym metodam, jako je klasifikace. ANN,
jsou predloZena pouze vstupni data, na jejichz zékladé
dojde poté k rozdéleni téchto dat do skupin podle jejich
vzajemné podobnosti. To je nejcastéji popisovano jako
samoorganizace dat a ANN jako samoorganizujici se
mapy (SOM) ¢i dle svého tvirce Kohonenovy neurono-
vé sit€ V. Ukazka struktury SOM je na obrazku 3b. Prin-
cipielné se jednd o projekci n-rozmérného vektoru do
jedno-, dvou- ¢i nékdy i vice rozmérného prostoru.
Napriklad SOM s dvojrozmérnou vystupni vrstvou mize
obsahovat umélé neurony usporadané planarné do miiz-
ky ¢i tvaru véeli plastve, nebo tato plocha mize byt riz-
né prostorové tvarovana ©. Kazdému neuronu ve vystup-
ni vrstvé je pfifazena hodnota. Béhem adaptace jsou
SOM postupné predkladany jednotlivé vstupni vektory
a neurony ve vystupni vrstvé o né ,,soupefi“. Vitéznym
neuronem je ten, jehoZ hodnota je nejblize k té, ktera
vznikla projekci vektoru vstupnich dat za pouziti aktual-
nich vahovych koeficientid. Hodnoty vitézného neuronu
a AN v okoli vitézného neuronu jsou pak korigovany na
vypocteny vystup, a to tak, Ze nejvice je ovlivnéna hod-
nota vitézného neuronu a imérné s rostouci vzdalenosti
od n¢j mira korekce klesa. Po probéhnuti ur¢itého mnoz-
stvi cykld dojde k pfifazeni jednotlivych vektord k neu-
rontim vystupni vrstvy. Do jednoho neuronu vystupni
vrstvy miZe dojit k projekci jednoho ¢i vice vektord, ale
muze dojit i k pfipadu, Ze dany AN zistane neobsazen.
Po zndzornéni vSech vektori na vystupni vrstvé lze
v mnoha pfipadech pozorovat rozdéleni dat do skupin.
Takto adaptovana sit je pfipravena ke druhé fazi, t;.
k predikci vystupi pro vektory pfipadd v prvni fazi
nepouzitych.

Potencial praktického vyuZiti ve farmaceutickém pra-
myslu a vyzkumu je obrovsky. Lze naptiklad pouZit data
jiz zndmych 1é¢iv specifické nemoci, s nimi pak adapto-
vat SOM a udélat projekci napiiklad vSech zndmych
latek do této SOM. Latky nachazejici se v oblasti, kterd
byla pfi adaptaci obsazena latkami G¢innymi na danou
nemoc, mohou byt téZ potencidlnimi 1éCivy této nemoci.

Adaptace ,,s ucitelem*

Na rozdil od neuronovych siti s adaptacnim algorit-
mem ,,bez ulitele”, kde jsou pouZzita pouze vstupni data,
je tato skupina ANN aplikovatelnd pouze na data, obsa-
hujici jak vstupni hodnoty, tak i jim odpovidajici vystup-
ni data. Vstupnimi daty mohou byt opét molekularni
deskriptory a vystupnimi naptiklad biologické, farmako-
logické ¢i jiné vlastnosti téchto latek.

Nejpouzivanéj$im typem siti s timto druhem adaptace
jsou tzv. doprednych (,.feed-forward, obrazek 3a) ANN
s adapta¢nim algoritmem zpétného Sifeni chyb (back pro-
pagation — BP) 7. Tyto ANN sestavaji ze dvou ¢i vice vza-
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Obr. 3. Topologie
a) feed-forward ANN, b) Kohonenova neuronovd sit

jemné propojenych vrstev umélych neurond (vstupni,
vystupni a 1 ¢i vice skrytych vrstev). Zatimco data jsou
zpracovavana ve sméru od vstupni vrstvy k vystupni,
adaptacni algoritmus postupuje smérem opacnym. Nejpr-
ve jsou ANN piedloZena vstupni data. S vyuZitim stavaji-
cich vdhovych koeficientll jednotlivych spojeni mezi AN
a hodnot urovné Sumu AN jsou spoctena vystupni data. Ta
jsou porovnana s daty obsazenymi v data setu a na zakla-
dé jejich rozdilt dojde ke korekci vahovych koeficienti
a hodnot trovné Sumu, a to zpétné od vystupni vrstvy pies
skryté vrstvy az po vstupni vrstvu ANN. K tpravé koefi-
cienti dochazi vétSinou pomoci gradientovych metod.
Takto upravené ANN jsou predloZena dalsi data a cely
postup se opakuje. Cilem tohoto postupu je minimalizace
rozdilti mezi vystupnimi daty vypoctenymi a piedloZeny-
mi. Kazda takto adaptovand ANN je schopna reproduko-
vat data pouzitd v daném tzv. ,trénovacim* souboru dat.
VEtSinou je vSak pozadovano, aby ANN byla pouzitelni
pro predikci. Toho se da dosahnout tim, Ze se soubor dat
rozdéli do dvou ¢i vice skupin. Prvni z nich jsou ,,trénova-
ci*, pouzita k vlastni Gpravé vah a trovné Sumd. Druhou
skupinou jsou verifikacni data. Ta slouZi ke sledovani zda
ANN béhem adaptace konverguje k feSeni se schopnosti
zobecnovat. V pfipadé minimalizace rozdilt vystupnich
dat vypoctenych a pozadovanych pro trénovaci a verifi-
kacni set zaroven lze fici, Ze ANN je adaptovana a je pou-
Zitelna pro feSeni konkrétniho tkolu. Né&kteti autofi pouZzi-
vaji k testovani zobectiovaci schopnosti ANN jesté jeden
datovy soubor — testovaci, obsahujiciho data, ktera nebyla
pritomna v obou predeSlych. Pomér poctu piipadl v tré-
novacim a verifika¢nim souboru se u jednotlivych autort
1i8i, zpravidla se pohybuje kolem 1 ku 3—4. Pro rozd€leni
dat do jednotlivych setll je vhodné nejprve pouzit Koho-
nenovy SOM, kde dojde k ur¢itému rozdéleni dat do sku-
pin s podobnymi vlastnostmi, a poté je mozné vybrat do
kazdého data setu relativné reprezentativni vzorek dat.

Adaptovanou ANN je mozné pouZit k predikci vystup-
nich dat pro vstupni data nepouzitd v ani jednom ze sou-
bort pfi adaptaci ¢i pro klasifikaci dat. Tyto postupy jsou
velmi Casto aplikovény.

Genetické algoritmy

Obdobné jako ANN simuluji funkci mozku, taktéz
i genetické algoritmy (GA) maji plivod v pfirodé, pres-
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Obr. 4. Schéma mozZné kombinace programii pro vypocet
molekulovych deskriptori (dle 6)

né&ji v Darwinove evolu¢ni teorii. Jednou z nejbéznéjsich
aplikaci GA je vybér téch nejvhodnéjsich vstupnich dat
pro ANN, aby bylo docileno u vystupti co nejnizsich
odchylek od pfedpokladanych hodnot. Na zacétku proce-
su je ndhodné generovan dany pocet tzv. chromozémi,
kde kaZzdy vstupni parametr je asociovan s urcitou jeho
¢asti, genem a jeho délka odpovida jejich poctu. V dal-
§im pribehu optimalizace dochazi ke vzdjemné vymeéné
genl mezi dvéma ¢i vice chromozémy (kfiZeni), jejich
testovani a k eliminaci ,,rodicovskych* chromozému. Pii
tomto procesu je vysledek nejvice zavisly na pivodni
populaci chromozému. Proto se zavadi jesté takzvana
mutace, kdy je s velmi malou pravdépodobnosti ndhodné
néktery gen zménén. Tim je zajisténa jesteé vyssi pravde-
podobnost dosazeni globalniho minima/maxima optima-
lizované funkce. Detailni popis a moZnosti vyuZiti GA ve
farmacii byl podan napfiklad v praci Parrilla ®.

Vyuziti GA nespociva pouze pii optimalizaci ANN,
ale i napriklad pfi vybéru vhodnych vinovych délek pro
stanoveni indomethacinu a acemethacinu *, predikci bio-
aktivity 19 ¢i vytéZovani dat V.

Molekulové deskriptory

Vybér latek, které maji byt pouzité pti adaptaci, musi
byt reprezentativnim vybérem, zahrnujicim vSechny
mozné strukturni motivy pouzité u latek pii predikci.
Daty, reprezentujici latky, mohou byt naptiklad jejich
fyzikéalné-chemické, biologické, toxikologické vlastnosti
¢i strukturni data molekul.

V posledni dobé je nejvice diskutovanym tématem
kédovani struktury a vyvoj vhodného softwaru pro tento
ucel 9. Cilem je vyvinout metodologii, kterd zaru¢i uni-
katni zapis molekulové struktury. Existuje cela fada pfi-
stupt k tomuto problému. Prvnim z nich je pouZziti dvoj-
rozmérného strukturniho vzorce a jeho zdpis riznymi
notacemi. Bohuzel tento zplisob nevyjadiuje sterické
usporadani atomti v molekule poptipadé chiralitu. Pouzi-
ti tfirozmérného modelu molekuly 1é¢iva dava jisté vyho-
dy, odpadé problém s chiralitou, ale objevuji se jiné pro-
blémy, jako je napftiklad uvaZovani jediné konkrétni
konformace molekuly. Rtizné metody kédovani molekul
pomoci 3D-deskriptorti jsou diskutoviany napiiklad
v pracich Novic¢ové 12 ¢ Smithse '?. Zfejmé vibec nej-

Vv

sofistikovanéj$i postup pro ziskéani strukturnich deskrip-
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torti (obr. 4) byl vyvinut skupinou profesora Gasteigera
9, Zde je struktura latky nejprve pievedena na tabulku
reprezentujici spojeni mezi jednotlivymi atomy. Tato
tabulka slouzi jako vstupni data pro odhad fyzikalné-
chemickych vlastnosti (program PETRA) a téZ i pro
generovani 3D modelu (CORINA), ktery je nasledné uZzit
k vypoctu deskriptord pomoci programtt MoRSE a ARC
a molekulového povrchu (SURFACE). Vysledkem toho-
to postupu je velké mnoZstvi molekulovych deskriptori,
zahrnujicich jak fyzikdlné-chemické, tak i sterické ¢i
elektronové a jiné vlastnosti. Pro dalsi zpracovani pomo-
ci ANN je dilezité, aby pocet deskriptorti pro vSechny
pouzité molekuly byl stejny. V praxi tento pozadavek
zustava nenaplnén pro molekuly s rliznym pocétem ato-
mu. Elegantnim feSenim je tzv. autokorelace, kterd pro-
dukuje predem dany pocet deskriptori. Takto pfipravena
data jsou jiZ pouZzitelnd pro ANN.

VyuZiti ANN ve farmacii

kovano mnoho ¢lanki a review ¥, Mezi aplikacemi
pievlada modelovani QSAR ¢ ADME vlastnosti 1922,

Jednou z mnoha relativné vyznamnych vlastnosti latek
je jejich lipofilicita, vyjadfena jako rozdélovaci koefi-
cient latky mezi oktanol a vodu. Ta hraje vyznamnou roli
pfi prechodu latek pres bunécnou sténu. Nékteré chemic-
ké programy (napi. Hyperchem 2) dokazi odhadnout
jeho hodnotu na zdkladé strukturnich dat ¢i kombinato-
rickym prohledavanim databézi. Ne vZdy odhady dobte
koresponduji s realitou. Zejména latky nezastoupené
v databazich ¢&i latky s méné Castym strukturnim moti-
vem patii mezi ty s niz§i presnosti odhadu. Vztah mezi
strukturou latky a jejim rozdélovacim koeficientem okta-
nol-voda byl modelovan Devillersem 2. Ten pouzil sou-
bor 7200 latek, jejichz molekuly byly reprezentovany
autokorelacnimi vektory a BP-ANN k této QSAR studii.

Parametrem souvisejicim s lipofilitou je rozpustnost
Ié¢iva ve smésném rozpoustédle voda — rozpoustédlo.
Feed-forward ANN s BP adaptacnim algoritmem byla
vyuZita k modelovani rozpustnosti latek v binarnich smé-
sich 5 rozpoustédel >, Celkova pramérnd procentudlni
odchylka vysledki predikce se pohybovala kolem 9 %,
coZ je lepsi vysledek neZ pfi pouZiti multilinearni regre-
se (11,5 %).

Od rozpustnosti latky a jejitho rozdélovaciho koefici-
entu je jiz velmi maly krok k vysokoucinné kapalinové
chromatografii a ostatnim separa¢nim metodam. Pravé
pfi vyvoji a optimalizaci postupli pro stanoveni Cistoty
meziproduktt a findlnich latek jsou ANN nasazovany
velmi Casto. V experimentalni Casti je pak Casto volena
metoda planovani pokust (experimental design — ED),
kdy je zaruceno, Ze i pii minimalnim poctu experimentl
je ziskano maximalni mnoZstvi chemické informace.
Kombinace ED a ANN byla pro analyzu 1é¢iv vyuZita
napiiklad v chromatografii 29 ¢i elektroforetickych sepa-
raénich metoddch 2-2®, Dal§im pifikladem vyuziti ANN
pfi vyvoji analytickych metod pro analyzu 1é¢iv je kvan-
titativni stanoveni acetaminofenu and fenobarbitalu ve
farmaceutickych pripravcich spektroskopickym sledova-
nim kinetiky reakci s 3-methylbenzothiazolin-2-on hy-
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drazonem v pfitomnosti kyseliny chlorovodikové
a Fe(III) jako oxida¢niho ¢inidla s ndslednym vyhodno-
cenim dat pomoci ANN 2. Vysledky ziskané zpracova-
nim pomoci ANN byly ptesnéjsi nez ziskané metodikou
parcidlnich nejmensich ¢tverct (partial least-squares —
PLS). Navic bylo demonstrovino, Ze pifi pfedchozim
zpracovani dat pomoci metody hlavnich komponent 1ze
presnost jeste zlepsit.

Jinou moZnosti uplatnéni ANN je pro predikci farma-
kokinetickych vlastnosti ze struktury latek. Turner
s kolektivem vyvinuli jednoduchou metodu pro predikci
clearance, frakce vazané na proteiny plazmy a objemu
distribuce strukturné rozdilnych latek 2?. Neméné zaji-
mavou praci je modelovani permeace 1é¢iv skrz kuzi 3,
kontrolované dopravy a uvoliiovéni 1é¢iva 3!-32,

Jednou z aplikaci Kohonenovych SOM je vybér vhod-
nych vlnovych délek pro stanoveni latek se silné prekry-
tymi excitaéné-emisnimi spektry *¥, ¢imz doslo k zjed-
noduseni pfipravy vzorku k analyze, a tim i k urychleni
celého procesu.

ZAVER

Metody umélé inteligence maji nezastupitelné misto
ve vyvoji novych 1é¢iv a ve studiu jejich vlastnosti in
silico, ¢imZ se sniZuji naklady a ¢as naro¢né laborator-
ni priace. ANN nachézeji stdle vétSi uplatnéni jak
v modelovéni vztahu mezi strukturou a aktivitou latky,
tak i pfi navrhovani novych struktur 1é¢iv. Neméné
dulezitou oblasti jejich aplikace je modelovani vlastni-
ho osudu lé¢iva v organizmu — adsorpce, distribuce,
metabolizace a vyluovani. Mnoho aplikaci se vénuje
téZ toxikologickému plisobeni téchto latek. Nelze téz
opomenout nové se rozvijejici oblast cileného transpor-
tu 1é¢iv a sledovani vlivu sloZeni 1é¢ivého pripravku na
jeho ucinnost.

LITERATURA

1. http://www.fda.gov/fdac/special/newdrug/ndd_toc.html
Suter, L., Babiss, L. E., Wheeldon, E. B.: Chem. Biol.,
2004; 11, 161-171.

Encyklopedie Wikipedia, http:/www.wikipedia.org
Turing, A.: Mind, 1950; 59, 433-460.

Kohonen, T.: Biol. Cybern., 1982; 43, 59-69.

Gasteiger, J., Teckentrup, A., Terfloth, L., Spycher, S.:
dJ. Phys. Org. Chem., 2003; 16, 232-245.

»

o TU

4&,

7. McClelland, J. L., Rumelhart, D. E.: Explorations in
parallel distributed processing. Cambridge, MA, MIT
Press 1988.

8. Parrill, A. L.: Drug Discovery Today, 1996; 1, 514-521.

9. Arcos, M. J., Ortiz, M. C., Villahoz, B., Sarabia, L. A.:
Anal. Chim. Acta, 1997; 339, 63-77.

10. Burden, F. R., Rosewarne, B. S., Winkler, D. A.: Che-
mom. Intell. Lab. Syst., 1997; 38, 127-137.

11. Kim, J. H., Jeoung, D., Lee, S., Kim, H.: J. Biomed.
Inform., 2004; 37, 260-268.

12. Novié, M., Vraéko, M.: Chemom. Intel. Lab. Syst., 2001;
59, 33-44.

13. Smiths, J. R. M., Schoenmakers, P., Stehmann, A. et
al.: Chemom. Intell. Lab. Syst., 1993; 18, 27-29.

14. Takayama, K., Fujikawa, M., Nagai, T.: Pharm. Res.
1999; 16, 1-6.

15. Gasperlin, M., Tusar, L., Tusar, M. et al.: Int. J.
Pharm., 1998; 168, 243-254.

16. Blake, J. F.: Curr. Opin. Biotechnol., 2000; 11, 104-107.

17. Terfloth, L., Gasteiger, J.: Drug Discovery Today,
2001; 6, 102-108.

18. Manallack, D. T., Livingstone, D. J.: Eur. J. Med.
Chem., 1999; 34, 195-208.

19. Smith, P. A,, Sorich, M. J., Low, L. S. C. et al.: J. Mol.

Graphics Modell., 2004; 22, 507-517.

Turner, J. V., Maddalena, D. J., Cutler, D. J.: Int. J.

Pharm., 2004; 270, 209-219.

Butina, D., Segall, M. D., Frankcombe, K.: Drug

Discovery Today, 2002; 7, S83-S88.

Ekins, S., Rose, J.: J. Mol. Graphics Modell., 2002; 20,

305-309.

http://www.hyper.com

Devillers, J., Domine, D., Guillon, C.: Eur. J. Med.

Chem., 1998; 33, 659-664.

Jouyban, A., Majidi, M. R., Jalilzadeh, H., Asad-

pour-Zeynali, K.: Il Farmaco, 2004; 59, 505-512.

Agatonovic-Kustrin, S., Zecevic, M., Zivanovic, L.:

J. Pharm. Biomed. Anal., 1999; 21, 95-10.

Dohnal, V., Li, H., Farkova, M., Havel, J.: Chirality,

2002; 14, 509-518.

Havel, J., Breadmore, M., Macka, M., Haddad, P. R.:

J. Chromatogr. A, 1999; 850, 345-353.

Ni, Y., Liu, C., Kokot, S.: Anal. Chim. Acta, 2000; 419,

185-196.

Yamashita, F., Hashida, M.: Adv. Drug Deliver. Rev,,

2003; 55, 1185-1199.

31. Sun, Y., Peng, Y., Chen Y., Shukla, A. J.: Adv. Drug
Deliver. Rev., 2003; 55, 1201-1215.

32. Takayama, K., Fujikawa, M., Obata Y., Morishita,
M.: Adv. Drug Deliver. Rev., 2003; 55, 1217-1231.

33. Capitan-Vallvey, L. F., Navas, N., del Olmo, M. et

al.: Talanta, 2000; 52, 1069-1079.

Alberts, B. et al.: Molecular biology of the cell, second

edition. New York, Garland Publishing, 1989, s. 1061.

20.
21.
22.

23.
24.

25.
26.
27.
28.
29.

30.

34.
Doslo 17. 1. 2005.
Prijato ke zverejnéni 2. 2. 2005.

Mgr. Viastimil Dohnal, Ph.D.

Zemédélska 1, 613 00 Brno
email: dohnal@mendelu.cz

167



