
Vývoj nového léku je v dnešní době velmi dlouhým
a finančně velmi náročným procesem. Celkové náklady
na vývoj komerčně dostupného léku ve Spojených stá-
tech amerických jsou odhadovány na 359 milionů dolarů
a délka tohoto vývoje představuje více než 10 let.
Z počátečního počtu 5000 testovaných látek je nakonec
jediná uvedena na trh. Ostatní jsou vyřazeny buď v před-
klinických testech (in vitro, in vivo, 1–3 roky), nebo pak
ve druhé fázi, kdy je na lidech testována bezpečnost
(několik měsíců), krátkodobé podávání (více než 2 roky)
a nakonec bezpečnost, dávkování a účinnost látky. Kli-
nické testy vyřadí přes 80 % všech látek. Posledním kro-
kem před uvedením na trh je schvalování orgánem U.S.
Food and Drug Adminstration na základě dat získaných
od výrobce. I po uvedení na trh je léčivo stále pod dohle-
dem 1, 2).

Je zřejmé, že náklady a čas potřebný k vývoji léčiva
jsou velmi vysoké. Jakékoliv zlepšení tohoto procesu

znamená značnou úsporu finančních prostředků a dřívěj-
ší uvedení přípravku na trh. Výběr vhodných látek pro
první fázi neprobíhá náhodně, ale bývá použita celá řada
statistických metod. Zejména se jedná o prohledávání
knihoven sloučenin, modelování vztahu mezi strukturou
a biologickou aktivitou látky (structure-activity rela-
tionship – SAR; quantitative-SAR – QSAR) a o predikci
absorpce, distribuce, metabolizmu a exkrece (adsorption,
distribution, metabolism and excretion – ADME). Jedně-
mi z perspektivních metod pro tento účel jsou metody
umělé inteligence.

Pojem umělá inteligence (artificial inteligence – AI)
byl definován Marvinem Minskym jako „věda, zabývají-
cí se tím jak přinutit stroje projevovat se takovým chová-
ním, které by v případě člověka vykazovalo potřebu inte-
ligence“ 3). Pro posuzování toho, zda je stroj inteligentní
či nikoliv, byl před více než půl stoletím navržen Alanem
Turingem test 4). Zkráceně se jedná o to, že stroj i člověk
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SOUHRN

Metody umělé inteligence: Nový trend ve farmacii

Umělé neuronové sítě (ANN) jsou spolu s genetickými algoritmy jednou z mnoha metod řazených do skupiny
metod umělé inteligence. Jejich aplikací na farmaceutická data je možné získat informace o vnitřní struktuře
těchto dat, vytvořit model (tzv. adaptovat umělou neuronovou síť), či v některých případech extrahovat pravidla,
na jejichž základě jsou data uspořádána. S pomocí adaptované ANN je dokonce možné predikovat tato data i pro
látky, které nebyly použity v adaptační fázi. ANN mají obrovský potenciál ve farmaceutickém výzkumu, inter-
pretaci analytických, farmakokinetických či toxikologických dat.

K l í č o v á s l o v a: umělé neuronové sítě – molekulové deskriptory – QSAR – QSPR

Čes. slov. Farm., 2005; 54, 163–167

SUMMARY

Methods of Artificial Intelligence: A New Trend in Pharmacy

Artificial neural networks (ANN) and genetic algorithms are one group of methods called artificial intelligence.
The application of ANN on pharmaceutical data can lead to an understanding of the inner structure of data and
a possibility to build a model (adaptation). In addition, for certain cases it is possible to extract rules from data.
The adapted ANN is prepared for the prediction of properties of compounds which were not used in the
adaptation phase. The applications of ANN have great potential in pharmaceutical industry and in the
interpretation of analytical, pharmacokinetic or toxicological data.

K e y w o r d s: artificial neural networks – molecular descriptors – QSAR – QSPR

Čes. slov. Farm., 2005; 54, 163–167 Má
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odpovídají na otázky a nezúčastněný pozorovatel má
určit, které odpovědi pocházejí od stroje a které od člo-
věka. Vzhledem k tomu, že se jedná pouze o jednu
z oblastí lidského myšlení, je tento test stále modifikován
a rozvíjen. Mezi metody UI patří kromě jiných také umě-
lé neuronové sítě (artificial neural network – ANN),
expertní systémy a genetické algoritmy. Tyto tři oblasti
jsou nejvíce používány v přírodních vědách. 

Umělé neuronové sítě byly navrženy jako výpočetní
systém kopírující svou biologickou předlohu – mozek.
Ten obsahuje kolem 1011 neuronů a 1014 spojů mezi
nimi. Vzhledem ke složitosti a neúplné objasněnosti
dějů v něm probíhajících simulují ANN pouze některé
z nich. I to však stačí k tomu, aby bylo možné ANN
„naučit“ či adaptovat na konkrétní řešený úkol
a následně ji využít k výpočtu („predikci“). Z matema-
tického hlediska se tedy jedná o vytvoření modelu
a jeho následnou aplikaci. 

Stejně jako se mozek skládá z neuronů, propojených
vhodným způsobem synapsemi, je též ANN sestavena ze
vzájemně propojených výpočetních jednotek – umělých
neuronů (artificial neuron – AN). Na obrázku 1 je porov-
nání biologického a umělého neuronu. V nejčastěji pou-
žívaných typech ANN jsou umělé neurony poskládány
do vrstev. Ty mohou sloužit ke vstupu dat (vstupní vrst-
va), k vlastním výpočtům (jedna či více skrytých vrstev)
a konečně k jejich výstupu (výstupní vrstva). Přítomnost
a počet skrytých vrstev ve struktuře ANN závisí na jejím
typu a též i na složitosti řešeného problému. Počet AN
v jednotlivých vrstvách je dán: pro vstupní či výstupní
vrstvu počtem vstupních respektive výstupních paramet-
rů řešeného úkolu; počet neuronů v jednotlivých skry-
tých vrstvách závisí na komplexnosti použitých dat. 

Umělý neuron je výpočetní jednotka, ve které dochází
k transformaci vstupních signálů na výstupní. V první
fázi se provede součet hodnot vstupních signálů. Vzhle-
dem k tomu, že v mozku mají signály stejné hodnoty po
projití různými spoji mezi neurony různou úroveň, byla
tato myšlenka implementována též do ANN. Každý spoj
mezi AN v umělé neuronové síti je podle své význam-
nosti zatížen jistým váhovým koeficientem, kterým se
úroveň procházejícího signálu násobí. V AN dochází
tedy k součtu vážených vstupních hodnot. Přesáhne-li
hodnota tohoto součtu tzv. prahovou hodnotu (úroveň
šumu), je transformována pomocí tzv. přechodové funk-

ce na výstupní hodnotu. Přechodová funkce musí splňo-
vat celou řadu kritérií, jako jsou její spojitost či mono-
tónnost v celém rozsahu reálných čísel. V drtivé většině
je používána sigmoidní funkce [1] (obr. 2).

θj = [1]

Kde θj je přechodová funkce neuronu j, e základ při-
rozeného logaritmu, wij váhové koeficienty spojení neu-
ronu i předchozí vrstvy s neuronem j, x výstupní hodno-
ty neuronů předchozí vrstvy a b je úroveň šumu či
prahová hodnota neuronu. Výstupní hodnota je opět
rozeslána váženými spojeními do umělých neuronů
v následující vrstvě. Díky tomu je výpočetní proces ANN
nazýván paralelně distribuovaný (PDP). 

V současné době dochází k implementaci PDP, a tím
i k rapidnímu zrychlení výpočtů při tvorbě některých
počítačových programů, ale také již byly vyvinuty první
počítače s PDP. 

Práce s ANN

Jak již bylo uvedeno v předchozím textu, je ANN nej-
častěji složena ze vzájemně propojených a do vrstev
seskupených umělých neuronů. Práce s umělou neurono-
vou sítí má dvě základní fáze. Ta první je adaptační, kdy
ANN je za použití určitého algoritmu adaptována na
konkrétní problém, zatímco druhá slouží již jen k výpo-
čtu. Je zřejmé, že zde existuje celá řada způsobů propo-
jení AN a též i mnoho adaptačních algoritmů. Nejběž-
nějším kritériem ke kategorizaci ANN je adaptační
algoritmus.

Adaptace ANN znamená ve skutečnosti hledání vhod-
ných váhových koeficientů, prahových hodnot a její
topologie. Ačkoliv by se mohlo zdát, že se hledá pouze
jediná kombinace hodnot, praxe ukazuje, že počet ANN
řešících správně daný problém je prakticky neomezený.
Vzhledem k velkému počtu proměnných není efektivní
použít náhodný nesystematický postup, a proto k jejich
nalezení byla vyvinuta celá řada sofistikovaných postu-
pů. Obecně lze rozdělit ANN dle adaptačních algoritmů

1

-Σwijxi+b

1+e
ij
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Obr. 1. Srovnání funkce biologického a umělého neuronu 
(dle 34).

Obr. 2. Průběh sigmoidní přechodové funkce
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na ty, kde data obsahují pouze vstupní veličiny – „adap-
tace bez učitele“, a ty, kde data obsahují i výstupní veli-
činy – „adaptace s učitelem“.

Adaptace „bez učitele“

Adaptace „bez učitele“ (unsupervised learning) se
používá zejména v metodách, které jsou analogické kla-
sickým statistickým metodám, jako je klasifikace. ANN,
jsou předložena pouze vstupní data, na jejichž základě
dojde poté k rozdělení těchto dat do skupin podle jejich
vzájemné podobnosti. To je nejčastěji popisováno jako
samoorganizace dat a ANN jako samoorganizující se
mapy (SOM) či dle svého tvůrce Kohonenovy neurono-
vé sítě 5). Ukázka struktury SOM je na obrázku 3b. Prin-
cipielně se jedná o projekci n-rozměrného vektoru do
jedno-, dvou- či někdy i více rozměrného prostoru.
Například SOM s dvojrozměrnou výstupní vrstvou může
obsahovat umělé neurony uspořádané planárně do mříž-
ky či tvaru včelí plástve, nebo tato plocha může být růz-
ně prostorově tvarována 6). Každému neuronu ve výstup-
ní vrstvě je přiřazena hodnota. Během adaptace jsou
SOM postupně předkládány jednotlivé vstupní vektory
a neurony ve výstupní vrstvě o ně „soupeří“. Vítězným
neuronem je ten, jehož hodnota je nejblíže k té, která
vznikla projekcí vektoru vstupních dat za použití aktuál-
ních váhových koeficientů. Hodnoty vítězného neuronu
a AN v okolí vítězného neuronu jsou pak korigovány na
vypočtený výstup, a to tak, že nejvíce je ovlivněna hod-
nota vítězného neuronu a úměrně s rostoucí vzdáleností
od něj míra korekce klesá. Po proběhnutí určitého množ-
ství cyklů dojde k přiřazení jednotlivých vektorů k neu-
ronům výstupní vrstvy. Do jednoho neuronu výstupní
vrstvy může dojít k projekci jednoho či více vektorů, ale
může dojít i k případu, že daný AN zůstane neobsazen.
Po znázornění všech vektorů na výstupní vrstvě lze
v mnoha případech pozorovat rozdělení dat do skupin.
Takto adaptovaná síť je připravena ke druhé fázi, tj.
k predikci výstupů pro vektory případů v první fázi
nepoužitých.

Potenciál praktického využití ve farmaceutickém prů-
myslu a výzkumu je obrovský. Lze například použít data
již známých léčiv specifické nemoci, s nimi pak adapto-
vat SOM a udělat projekci například všech známých
látek do této SOM. Látky nacházející se v oblasti, která
byla při adaptaci obsazena látkami účinnými na danou
nemoc, mohou být též potenciálními léčivy této nemoci.

Adaptace „s učitelem“

Na rozdíl od neuronových sítí s adaptačním algorit-
mem „bez učitele“, kde jsou použita pouze vstupní data,
je tato skupina ANN aplikovatelná pouze na data, obsa-
hující jak vstupní hodnoty, tak i jim odpovídající výstup-
ní data. Vstupními daty mohou být opět molekulární
deskriptory a výstupními například biologické, farmako-
logické či jiné vlastnosti těchto látek.

Nejpoužívanějším typem sítí s tímto druhem adaptace
jsou tzv. dopředných („feed-forward, obrázek 3a) ANN
s adaptačním algoritmem zpětného šíření chyb (back pro-
pagation – BP) 7). Tyto ANN sestávají ze dvou či více vzá-

jemně propojených vrstev umělých neuronů (vstupní,
výstupní a 1 či více skrytých vrstev). Zatímco data jsou
zpracovávána ve směru od vstupní vrstvy k výstupní,
adaptační algoritmus postupuje směrem opačným. Nejpr-
ve jsou ANN předložena vstupní data. S využitím stávají-
cích váhových koeficientů jednotlivých spojení mezi AN
a hodnot úrovně šumu AN jsou spočtena výstupní data. Ta
jsou porovnána s daty obsaženými v data setu a na zákla-
dě jejich rozdílů dojde ke korekci váhových koeficientů
a hodnot úrovně šumu, a to zpětně od výstupní vrstvy přes
skryté vrstvy až po vstupní vrstvu ANN. K úpravě koefi-
cientů dochází většinou pomocí gradientových metod.
Takto upravené ANN jsou předložena další data a celý
postup se opakuje. Cílem tohoto postupu je minimalizace
rozdílů mezi výstupními daty vypočtenými a předložený-
mi. Každá takto adaptovaná ANN je schopna reproduko-
vat data použitá v daném tzv. „trénovacím“ souboru dat.
Většinou je však požadováno, aby ANN byla použitelná
pro predikci. Toho se dá dosáhnout tím, že se soubor dat
rozdělí do dvou či více skupin. První z nich jsou „trénova-
cí“, použitá k vlastní úpravě vah a úrovně šumů. Druhou
skupinou jsou verifikační data. Ta slouží ke sledování zda
ANN během adaptace konverguje k řešení se schopností
zobecňovat. V případě minimalizace rozdílů výstupních
dat vypočtených a požadovaných pro trénovací a verifi-
kační set zároveň lze říci, že ANN je adaptována a je pou-
žitelná pro řešení konkrétního úkolu. Někteří autoři použí-
vají k testování zobecňovací schopnosti ANN ještě jeden
datový soubor – testovací, obsahujícího data, která nebyla
přítomná v obou předešlých. Poměr počtu případů v tré-
novacím a verifikačním souboru se u jednotlivých autorů
liší, zpravidla se pohybuje kolem 1 ku 3–4. Pro rozdělení
dat do jednotlivých setů je vhodné nejprve použít Koho-
nenovy SOM, kde dojde k určitému rozdělení dat do sku-
pin s podobnými vlastnostmi, a poté je možné vybrat do
každého data setu relativně reprezentativní vzorek dat.

Adaptovanou ANN je možné použít k predikci výstup-
ních dat pro vstupní data nepoužitá v ani jednom ze sou-
borů při adaptaci či pro klasifikaci dat. Tyto postupy jsou
velmi často aplikovány. 

Genetické algoritmy

Obdobně jako ANN simulují funkci mozku, taktéž
i genetické algoritmy (GA) mají původ v přírodě, přes-
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Obr. 3. Topologie 
a) feed-forward ANN, b) Kohonenova neuronová síť
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něji v Darwinově evoluční teorii. Jednou z nejběžnějších
aplikací GA je výběr těch nejvhodnějších vstupních dat
pro ANN, aby bylo docíleno u výstupů co nejnižších
odchylek od předpokládaných hodnot. Na začátku proce-
su je náhodně generován daný počet tzv. chromozómů,
kde každý vstupní parametr je asociován s určitou jeho
částí, genem a jeho délka odpovídá jejich počtu. V dal-
ším průběhu optimalizace dochází ke vzájemné výměně
genů mezi dvěma či více chromozómy (křížení), jejich
testování a k eliminaci „rodičovských“ chromozómů. Při
tomto procesu je výsledek nejvíce závislý na původní
populaci chromozómů. Proto se zavádí ještě takzvaná
mutace, kdy je s velmi malou pravděpodobností náhodně
některý gen změněn. Tím je zajištěna ještě vyšší pravdě-
podobnost dosažení globálního minima/maxima optima-
lizované funkce. Detailní popis a možnosti využití GA ve
farmacii byl podán například v práci Parrilla 8).

Využití GA nespočívá pouze při optimalizaci ANN,
ale i například při výběru vhodných vlnových délek pro
stanovení indomethacinu a acemethacinu 9), predikci bio-
aktivity 10) či vytěžování dat 11).

Molekulové deskriptory

Výběr látek, které mají být použité při adaptaci, musí
být reprezentativním výběrem, zahrnujícím všechny
možné strukturní motivy použité u látek při predikci.
Daty, reprezentující látky, mohou být například jejich
fyzikálně-chemické, biologické, toxikologické vlastnosti
či strukturní data molekul. 

V poslední době je nejvíce diskutovaným tématem
kódování struktury a vývoj vhodného softwaru pro tento
účel 6). Cílem je vyvinout metodologii, která zaručí uni-
kátní zápis molekulové struktury. Existuje celá řada pří-
stupů k tomuto problému. Prvním z nich je použití dvoj-
rozměrného strukturního vzorce a jeho zápis různými
notacemi. Bohužel tento způsob nevyjadřuje sterické
uspořádání atomů v molekule popřípadě chiralitu. Použi-
tí třírozměrného modelu molekuly léčiva dává jisté výho-
dy, odpadá problém s chiralitou, ale objevují se jiné pro-
blémy, jako je například uvažování jediné konkrétní
konformace molekuly. Různé metody kódování molekul
pomocí 3D-deskriptorů jsou diskutovány například
v pracích Novičové 12) či Smithse 13). Zřejmě vůbec nej-
sofistikovanější postup pro získání strukturních deskrip-

torů (obr. 4) byl vyvinut skupinou profesora Gasteigera
6). Zde je struktura látky nejprve převedena na tabulku
reprezentující spojení mezi jednotlivými atomy. Tato
tabulka slouží jako vstupní data pro odhad fyzikálně-
chemických vlastností (program PETRA) a též i pro
generování 3D modelu (CORINA), který je následně užit
k výpočtu deskriptorů pomocí programů MoRSE a ARC
a molekulového povrchu (SURFACE). Výsledkem toho-
to postupu je velké množství molekulových deskriptorů,
zahrnujících jak fyzikálně-chemické, tak i sterické či
elektronové a jiné vlastnosti. Pro další zpracování pomo-
cí ANN je důležité, aby počet deskriptorů pro všechny
použité molekuly byl stejný. V praxi tento požadavek
zůstává nenaplněn pro molekuly s různým počtem ato-
mů. Elegantním řešením je tzv. autokorelace, která pro-
dukuje předem daný počet deskriptorů. Takto připravená
data jsou již použitelná pro ANN.

Využití ANN ve farmacii

O konkrétním využití ANN ve farmacii již bylo publi-
kováno mnoho článků a review 14–18). Mezi aplikacemi
převládá modelování QSAR či ADME vlastností 19–22). 

Jednou z mnoha relativně významných vlastností látek
je jejich lipofilicita, vyjádřená jako rozdělovací koefi-
cient látky mezi oktanol a vodu. Ta hraje významnou roli
při přechodu látek přes buněčnou stěnu. Některé chemic-
ké programy (např. Hyperchem 23)) dokáží odhadnout
jeho hodnotu na základě strukturních dat či kombinato-
rickým prohledáváním databází. Ne vždy odhady dobře
korespondují s realitou. Zejména látky nezastoupené
v databázích či látky s méně častým strukturním moti-
vem patří mezi ty s nižší přesností odhadu. Vztah mezi
strukturou látky a jejím rozdělovacím koeficientem okta-
nol-voda byl modelován Devillersem 24). Ten použil sou-
bor 7200 látek, jejichž molekuly byly reprezentovány
autokorelačními vektory a BP-ANN k této QSAR studii.

Parametrem souvisejícím s lipofilitou je rozpustnost
léčiva ve směsném rozpouštědle voda – rozpouštědlo.
Feed-forward ANN s BP adaptačním algoritmem byla
využita k modelování rozpustnosti látek v binárních smě-
sích 5 rozpouštědel 25). Celková průměrná procentuální
odchylka výsledků predikce se pohybovala kolem 9 %,
což je lepší výsledek než při použití multilineární regre-
se (11,5 %).

Od rozpustnosti látky a jejího rozdělovacího koefici-
entu je již velmi malý krok k vysokoúčinné kapalinové
chromatografii a ostatním separačním metodám. Právě
při vývoji a optimalizaci postupů pro stanovení čistoty
meziproduktů a finálních látek jsou ANN nasazovány
velmi často. V experimentální části je pak často volena
metoda plánování pokusů (experimental design – ED),
kdy je zaručeno, že i při minimálním počtu experimentů
je získáno maximální množství chemické informace.
Kombinace ED a ANN byla pro analýzu léčiv využita
například v chromatografii 26) či elektroforetických sepa-
račních metodách 27, 28). Dalším příkladem využití ANN
při vývoji analytických metod pro analýzu léčiv je kvan-
titativní stanovení acetaminofenu and fenobarbitalu ve
farmaceutických přípravcích spektroskopickým sledová-
ním kinetiky reakcí s 3-methylbenzothiazolin-2-on hy-

166

Obr. 4. Schéma možné kombinace programů pro výpočet
molekulových deskriptorů (dle 6)
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drazonem v přítomnosti kyseliny chlorovodíkové
a Fe(III) jako oxidačního činidla s následným vyhodno-
cením dat pomocí ANN 29). Výsledky získané zpracová-
ním pomocí ANN byly přesnější než získané metodikou
parciálních nejmenších čtverců (partial least-squares –
PLS). Navíc bylo demonstrováno, že při předchozím
zpracování dat pomocí metody hlavních komponent lze
přesnost ještě zlepšit. 

Jinou možností uplatnění ANN je pro predikci farma-
kokinetických vlastností ze struktury látek. Turner
s kolektivem vyvinuli jednoduchou metodu pro predikci
clearance, frakce vázané na proteiny plazmy a objemu
distribuce strukturně rozdílných látek 20). Neméně zají-
mavou prací je modelování permeace léčiv skrz kůži 30),
kontrolované dopravy a uvolňování léčiva 31, 32).

Jednou z aplikací Kohonenových SOM je výběr vhod-
ných vlnových délek pro stanovení látek se silně překry-
tými excitačně-emisními spektry 33), čímž došlo k zjed-
nodušení přípravy vzorku k analýze, a tím i k urychlení
celého procesu.

ZÁVùR

Metody umělé inteligence mají nezastupitelné místo
ve vývoji nových léčiv a ve studiu jejich vlastností in
silico, čímž se snižují náklady a čas náročné laborator-
ní práce. ANN nacházejí stále větší uplatnění jak
v modelování vztahu mezi strukturou a aktivitou látky,
tak i při navrhování nových struktur léčiv. Neméně
důležitou oblastí jejich aplikace je modelování vlastní-
ho osudu léčiva v organizmu – adsorpce, distribuce,
metabolizace a vylučování. Mnoho aplikací se věnuje
též toxikologickému působení těchto látek. Nelze též
opomenout nově se rozvíjející oblast cíleného transpor-
tu léčiv a sledování vlivu složení léčivého přípravku na
jeho účinnost. 
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