#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of an optimal algorithm for effective diagnostics of non-small cell lung cancer with ALK gene rearrangement – implementation of the method and practical experiences with routine diagnostics


Authors: Tomáš Rozkoš 1;  Aleš Ryška 1;  Markéta Nová 1;  Helena Hornychová 1;  Lukáš Krbal 1;  Radoslav Matěj 2,3;  Jan Laco 1
Authors‘ workplace: Centrum pro výzkum, diagnostiku a léčbu neurodegenerativních onemocnění a Národní referenční laboratoř TSE-CJN, Thomayerova nemocnice, Praha ;  Fingerlandův ústav patologie, Univerzita Karlova, Lékařská fakulta v Hradci Králové a Fakultní nemocnice Hradec Králové 1;  Oddělení patologie a molekulární medicíny 2;  Ústav patologie, Univerzita Karlova, 1. lékařská fakulta a Všeobecná fakultní nemocnice, Praha 3
Published in: Čes.-slov. Patol., 53, 2017, No. 2, p. 89-96
Category: Original Article

Overview

The aim of the retrospective part of the study was a) to select an optimal clone of immunohistochemical (IHC) antibody against the ALK protein with specificity and sensitivity high enough to use this antibody as a screening method for selecting non-small cell lung cancer (NSCLC) cases for fluorescence in situ hybridization (FISH) testing of ALK gene rearrangement and b) to determine the diagnostic yield of “small” biopsies i.e. endobronchial, transbronchial and transthoracic biopsies and cytoblocks for ALK gene rearrangement testing. The best IHC method of ALK protein detection (clone D5F3, dilution 1:100, Cell Signaling Technology, Danvers, MA, USA) was then verified in prospective routine testing of patients with NSCLC. ALK status was correlated with tumor morphology and clinical data.

In the retrospective part of the study, 170 EGFR-nonmutated cases of NSCLC were IHC and FISH tested. In the prospective part, 557 cases of NSCLC were tested by IHC and 76 by FISH. There were 8/154 (5.2%) cases with ALK gene rearrangement detected in the retrospective part and 24/557(4.3 %) in the prospective part. Sensitivity and specificity of the best IHC method were 100 % and 99 % in the retrospective part and 100 % and 80 % in the prospective part. The diagnostic yield of “small” biopsies was between 74 – 80 % retrospectively, depending on IHC variant, and 88 % prospectively. No case with ALK gene rearrangement detected prospectively had EGFR mutation. A high diagnostic yield confirms that ALK status testing can be used in this type of specimen. A prevalence of 5.2 % in the retrospective part (EGFR-nonmutated cases) and 4.3 % in the prospective part (without known EGFR mutation status), tumor morphology (solid and acinar type, mucinous type or at least partial mucin production (extra- and/or intracellular) as well as lower average age and male/female ratio of patients with ALK positive tumors in the prospective part (57.5 y vs. 65.2 y, 8 men and 16 women vs. 336 men and 197 women) are consistent with global data.

Keywords:
Non-small cell lung cancer – NSCLC – ALK – Immunohistochemistry – FISH


Sources

1. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARCPress; 2015: 26-43.

2. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011; 12(2): 175-180.

3. Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat med 2013; 18(3): 378-381.

4. Pan Y, Zhang Y, Li Y, et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 2014; 84(2): 121-126.

5. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543-550.

6. Chatziandreou I, Tsioli P, Sakellariou S, et al. Comprehensive Molecular Analysis of NSCLC; Clinicopathological Associations. PLoS One 2015; 10(7): e0133859.

7. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin 2011; 61(2): 91-112.

8. Dietel M, Jöhrens K, Laffert MV, et al. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther 2015; 22(9): 417-430.

9. Soda M, Choi YL, Enomoto M. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448(7153): 561-566.

10. Iyevleva AG, Raskin GA, Tiurin VI. Novel ALK fusion partners in lung cancer. Cancer Lett 2015; 362(1): 116-121.

11. Lira ME, Kim TM, Huang D, et al. Multiplexed Gene Expression and Fusion Transcript Analysis to Detect ALK Fusions in Lung Cancer. J Mol Diagn 2013; 15(1): 51-61.

12. Choi YL, Lira ME, Hong M, et al. A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol 2014; 9(4): 563-566.

13. Hong M, Kim RN, Song JY, et al. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma. J Thorac Oncol 2014; 9(3): 419-422.

14. Wong DW, Leung EL, Wong SK, et al. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer 2011; 117(12): 2709-2718.

15. Kwak EL, Bang YJ, Camidge DR. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363(18): 1693-1703.

16. Mazières J, Zalcman G, Crinò L, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol 2015; 33(9): 992-999.

17. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371(21): 1963-1971.

18. Toyokawa G, Seto T. Anaplastic lymphoma kinase rearrangement in lung cancer: its biological and clinical significance. Respir Investig 2014; 52(6): 330-338.

19. Bang YJ. Treatment of ALK-positive non-small cell lung cancer. Arch Pathol Lab Med 2012; 136(10): 1201-1204.

20. Camidge DR, Bang YJ, Kwak EL. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13(10): 1011-1019.

21. Shaw AT, Yeap BY, Solomon BJ. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 2011; 12(11): 1004-1012.

22. Shaw AT, Kim DW, Nakagawa K. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013; 368(25): 2385-2394.

23. Solomon BJ, Cappuzzo F, Felip E, et al. Intracranial Efficacy of Crizotinib Versus Chemotherapy in Patients With Advanced ALK-Positive Non-Small-Cell Lung Cancer: Results From PROFILE 1014. J Clin Oncol 2016; 34(24): 2858-2865.

24. Kolek V, Skřičková J, Pešek M, et al. České zkušenosti s léčbou crizotinibem v kontextu mezinárodních studií a další perspektivy léčby ALK pozitivních nemalobuněčných karcinomů plic. Lung Cancer News 2015; 4-8.

25. Dundr P, Hornychová H, Matěj R, Ryška A, Staněk L, Tichý T. Doporučený postup pro histologické vyšetření karcinomu plic. Společnost českých patologů ČLS JEP, 2013.

26. McLeer-Florin A, Moro-Sibilot D, Melis A, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol 2012; 7(2): 348-354.

27. Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol 2013; 8(3): 322-328.

28. Alì G, Proietti A, Pelliccioni S, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med 2014; 138(11): 1449-1458.

29. Ryška A, Nenutil R. Doporučený postup pro zpracování a vyšetření bioptických vzorků prsu. Společnost českých patologů ČSL JEP, 2013.

30. Rüschoff J, Dietel M, Baretton G, et al. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch 2010; 457(3): 299-307.

31. Ryška A, Matěj R. Doporučený postup SČP ČLS JEP pro vyšetření NSCLC – aktualizace algoritmu testování ALK – únor 2016.

32. Lee T, Lee B, Choi YL, Han J, Ahn MJ, Um SW. Non-small cell lung cancer with concomitant EGFR, KRAS, and ALK mutation: clinicopathologic features of 12 cases. J Pathol Transl Med 2016; 50(3): 197-203.

33. Gainor JF, Varghese AM, Ou SH, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res 2013; 19(15): 4273-4281.

34. Tsao MS, Hirsch FR, Yatabe Y. IASLC Atlas of ALK Testing in Lung Cancer. Aurora: IASLC Press; 2013.

35. Ma D, Wang Z, Yang L, et al. Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative. Oncotarget 2016; 7(39): 64410-64420.

36. Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2015; 356: 58-71.

37. Cruz-Rico G, Avilés-Salas A, Segura-González M, et al. Diagnosis of EML4-ALK translocation with FISH, immunohistochemistry, and real-time polymerase chain reaction in patients with non-small cell lung cancer. Am J Clin Oncol. In press 2017.

Labels
Anatomical pathology Forensic medical examiner Toxicology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#