#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neurorehabilitation of Sensorimotor Function after Spinal Cord Injury


Authors: J. Kříž 1,2;  Z. Hlinková 1
Authors‘ workplace: Spinální jednotka při Klinice rehabilitace a tělovýchovného lékařství 2. LF UK a FN v Motole, Praha 1;  Ortopedicko-traumatologická klinika 3. LF UK a FN Královské Vinohrady, Praha 2
Published in: Cesk Slov Neurol N 2016; 79/112(4): 378-394
Category: Minimonography
doi: https://doi.org/10.14735/amcsnn2016378

Overview

Neurorehabilitation constitutes to be the primary therapeutic approach to patients with spinal cord injury. Intense stimulation of the central nervous system is intended to maximize improvement in neurological function. Besides the neurological development, every attempt is made to achieve the highest possible level of motor function, verticalization and locomotion with the goal to secure maximum self-sufficiency. The most serious motor impairment is the respiratory pattern disorder with limited ventilatory parameters. This is due to impairment of motor functions caused by thoracic but primarily cervical lesions. Strength of the trunk muscles determines the ability of verticalization to the sitting or standing position and is also influenced by the upper and lower limb function. Activity of the upper extremities predominantly determines the level of self-sufficiency but also the level of mobility. Ability to recruit lower extremity function is crucial for locomotion though residual mobility may be useful e.g. during transfers. Rehabilitation is therefore focused on training the trunk as well as the limb muscles. The desired outcome is the return of muscle strength and inclusion of paretic muscles into functional movement patterns as well as respiratory pattern. To meet these goals, several different physiotherapeutic methods may be utilized. These may be combined as needed and according to a therapist’s creativity. The treatment is based on neurophysiological principles including those based on motor ontogenesis. The objective is to utilize predetermined motor targets and recruit the damaged segments into their physiologic function. To that end, it is possible to utilize methods that employ voluntary muscle control (e.g. Dynamic Neuromuscular Stabilization) as well as methods based on involuntary movement control (e.g. Vojta’s reflex locomotion). A specific therapeutic approach utilizes robotic systems that complete more conventional methods of physiotherapy and afford a greater variety of treatment. This also provides a significant motivating element.

Key words:
spinal cord injury – rehabilitation – physiotherapeutic methods – robotic training

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Lynskey JV, Belanger A, Jung R. Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev 2008;45(2):229– 40.

2. Fouad K, Tetzlaff W. Rehabilitative train­ing and plasticity fol­low­ing spinal cord injury. Exp Neurol 2012;235(1):91– 9. doi: 10.1016/ j.expneurol.2011.02.009.

3. Kirshblum SC, War­ing W, Biering-Sorensen F, et al. Reference for the 2011 revision of the International Standards for Neurological Clas­sification of Spinal Cord Injury. J Spinal Cord Med 2011;34(6):547– 54. doi: 10.1179/ 107902611X13186000420242.

4. Kříž J, Háková R, Hyšperská V, et al. Mezinárodní standardy pro neurologickou klasifikaci míšního poranění –  revize 2013. Cesk Slov Neurol N 2014;77/ 110(1):77– 81.

5. Ditun­no JF, Little JW, Tes­sler A, et al. Spinal shock revisited: a four-phase model. Spinal Cord 2004;42(7):383– 95.

6. Háková R, Kříž J. Míšní šok –  od patofyziologie ke klinickým projevům. Cesk Slov Neurol N 2015;78/ 111(3):263– 7.

7. Steeves JD, Kramer JK, Fawcett JW, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 2011;49(2):257– 65. doi: 10.1038/ sc.2010.99.

8. van Hedel HJ, Curt A. Fight­ing for each segment: estimat­ing the clinical value of cervical and thoracic segments in SCI. J Neurotrauma 2006;23(11):1621– 31.

9. Curt A, Van Hedel HJ, Klaus D, et al. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 2008;25(6):677– 85. doi: 10.1089/ neu.2007.0468.

10. Zim­mer MB, Nantwi K, Goshgarian HG. Ef­fect of spinal cord injury on the respiratory system: basic research and cur­rent clinical treatment options. J Spinal Cord Med 2007;30(4):319– 30.

11. Alvarez SE, Peterson M, Lunsford BR. Respiratory treatment of the adult patient with spinal cord injury. Phys Ther 1981;61(12):1737– 45.

12. Reid WD, Brown JA, Kon­nyu KJ, et al. Physiotherapy secretion removal techniques in people with spinal cord injury: a systematic review. J Spinal Cord Med 2010;33(4):353– 70.

13. Gabison S, Ver­rier MC, Nadeau S, et al. Trunk strength and function us­ing the multidirectional reach distance in individuals with non-traumatic spinal cord injury. J Spinal Cord Med 2014;37(5):537– 47. doi: 10.1179/ 2045772314Y.0000000246.

14. Sprigle S, Maurer C, Holowka M. Development of valid and reliable measures of postural stability. J Spinal Cord Med 2007;30(1):40– 9.

15. Kolář P. Dynamická neuromuskulární stabilizace In: Kolář P et al, eds. Rehabilitace v klinické praxi. Praha: Galén 2009:233– 46.

16. Vojta V, Peters A. Vojtův princip. Praha: Grada publish­ing 1995.

17. Sin­nott KA, Milburn P, McNaughton H. Factors as­sociated with thoracic spinal cord injury, lesion level and rotator cuff disorders. Spinal Cord 2000;38(12):748– 53.

18. Pentland WE, Twomey LT. Upper limb function in persons with long term paraplegia and implications for independence: part II. Paraplegia 1994;32(4):219– 24.

19. Doll U, Maurer-Burkhard B, Spahn B, et al. Functional hand development in tetraplegia. Spinal Cord 1998;36(12):818– 21.

20. Kim CM, Eng JJ, Whittaker MW. Level walk­ing and ambulatory capacity in persons with incomplete spinal cord injury: relationship with muscle strength. Spinal Cord 2004;42(3):156– 62.

21. Ionta S, Vil­liger M, Jutzeler CR, et al. Spinal cord injury af­fects the interplay between visual and sensorimotor representations of the body. Sci Rep 2016;6:20144. doi: 10.1038/ srep20144.

22. Triolo RJ, Bailey SN, Mil­ler ME, et al. Ef­fects of stimulat­ing hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil 2013;94(9):1766– 75. doi: 10.1016/ j.apmr.2013.02.023.

23. Kras­sioukov A. Autonomic function fol­low­ing cervical spinal cord injury. Respir Physiol Neurobio­l 2009;169(2):157– 64. doi: 10.1016/ j.resp.2009.08.003.

24. Nyland J, Quigley P, Huang C, et al. Preserv­ing transfer independence among individuals with spinal cord injury. Spinal Cord 2000;38(11):649– 57.

25. Kobesova A, Kolar P. Developmental kinesiology: three levels of motor control in the as­ses­sment and treatment of the motor system. J Bodyw Mov Ther 2014;18(1):23– 33. doi: 10.1016/ j.jbmt.2013.04.002.

26. Frank C, Kobesova A, Kolar P. Dynamic neuromuscular stabilization & sports rehabilitation. Int J Sports Phys Ther 2013;8(1):62– 73.

27. Bobath B. Adult hemiplegia. Evaluation and treatment. London: Heinemann 1990.

28. Hindle KB, Whitcomb TJ, Briggs WO, et al. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Ef­fects on Range of Motion and Muscular Function. J Hum Kinet 2012;31:105– 13. doi: 10.2478/ v10078-012-0011-y.

29. Adler SS, Beckers D, Buck M. PNF in Practice. Berlin: Springer-Verlag 1993.

30. Janda V, Vávrová M. Senzomotorická stimulace. Rehabilitácia 1992;25:14– 34.

31. Rywerant Y. The Feldenkrais Method: Teach­ing by Handling. San Francisco: Harper & Row 1983.

32. Lee JS, Yang SH, Koog YH, et al. Ef­fectiveness of sl­ing exercise for chronic low back pain: a systematic review. J Phys Ther Sci 2014;26(8):1301– 6. doi: 10.1589/ jpts.26.1301.

33. Maeo S, Chou T, Yamamoto M, et al. Muscular activities dur­ing sling- and ground-based push-up exercise. BMC Res Notes 2014;7:192. doi: 10.1186/ 1756-0500-7-192.

34. Tamburel­la F, Scivoletto G, Molinari M. Somatosensory inputs by application of KinesioTaping: ef­fects on spasticity, balance, and gait in chronic spinal cord injury. Front Hum Neurosci 2014;30(8):367.

35. Vařeka I, Bednář M, Vařeková R. Robotická rehabilitace chůze. Cesk Slov Neurol N 2016;79/ 112(2):168– 72.

36. Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait train­ing and as­ses­sment. J Rehabil Res Dev 2006;43(5):679– 94.

37. Esclarin A, Bravo P, Ar­royo O, et al. Tracheostomy ventilation versus diaphragmatic pacemaker ventilation in high spinal cord injury. Paraplegia 1994;32(10):687– 93.

38. Brindley GS, Polkey CE, Rushton DN, et al. Sacral anterior root stimulator for bladder kontrol in paraplegia: the first 50 cases. J Neurol Neurosurg Psychiatry 1986;49(10):1004– 14.

39. Wieler M, Stein RB, Ladouceur M, et al. Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil 1999;80(5):495– 500.

40. Everaert DG, Thompson AK, Chong SL, et al. Does functional electrical stimulation for foot drop strengthen corticospinal con­nections? Neurorehabil Neural Repair 2010;24(2):168– 77. doi: 10.1177/ 1545968309349939.

41. Yoshida T, Masani K, Sayenko D, et al. Cardiovascular Response of Individuals with Spinal Cord Injury to Dynamic Functional Electrical Stimulation Under Orthostatic Stres­s. IEEE Trans Neural Syst Rehabil Eng 2013;21(1):37– 45. doi: 10.1109/ TNSRE.2012.2211894.

42. Seitz RJ, Kam­merzell A, Samartzi M, et al. Monitor­ing of visumotor coordination in healthy subjects and patients with stroke and parkinson’s disease: an application study us­ing the PABLO-device. Int J Neurorehabilitation 2014;1:113.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2016 Issue 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#